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A DOMAIN DECOMPOSITION APPROACH FOR
UNCERTAINTY ANALYSIS∗

QIFENG LIAO† AND KAREN WILLCOX†

Abstract. This paper proposes a decomposition approach for uncertainty analysis of systems
governed by partial differential equations (PDEs). The system is split into local components using
domain decomposition. Our domain-decomposed uncertainty quantification (DDUQ) approach per-
forms uncertainty analysis independently on each local component in an “offline” phase, and then
assembles global uncertainty analysis results using precomputed local information in an “online”
phase. At the heart of the DDUQ approach is importance sampling, which weights the precomputed
local PDE solutions appropriately so as to satisfy the domain decomposition coupling conditions.
To avoid global PDE solves in the online phase, a proper orthogonal decomposition reduced model
provides an efficient approximate representation of the coupling functions.
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1. Introduction. Many problems arising in computational science and engi-
neering are described by mathematical models of high complexity—involving mul-
tiple disciplines, characterized by a large number of parameters, and impacted by
multiple sources of uncertainty. Decomposition of a system into subsystems or com-
ponent parts has been one strategy to manage this complexity. For example, modern
engineered systems are typically designed by multiple groups, usually decomposed
along disciplinary or subsystem lines, sometimes spanning different organizations and
even different geographical locations. Mathematical strategies have been developed
for decomposing a simulation task (e.g., domain decomposition methods [45]), for
decomposing an optimization task (e.g., domain decomposition for optimal design or
control [28, 10, 29, 5]), and for decomposing a complex design task (e.g., decompo-
sition approaches to multidisciplinary optimization [15, 34, 55]). In this paper we
propose a decomposition approach for uncertainty quantification (UQ). In particular,
we focus on the simulation of systems governed by stochastic partial differential equa-
tions (PDEs) and a domain decomposition approach to quantification of uncertainty
in the corresponding quantities of interest.

In the design setting, decomposition approaches are not typically aimed at im-
proving computational efficiency, although in some cases decomposition can admit
parallelism that would otherwise be impossible [57]. Rather, decomposition is typi-
cally employed in situations for which it is infeasible or impractical to achieve tight
coupling among the system subcomponents. This inability to achieve tight coupling
becomes a particular problem when the goal is to wrap an outer loop (e.g., opti-
mization) around the simulation. In the field of multidisciplinary design optimization
(MDO), decomposition is achieved through mathematical formulations such as col-
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laborative optimization [35, 34, 53], bi-level integrated system synthesis [54, 55, 16],
and analytic target cascading [43, 44]. These formulations involve optimization at
a local subsystem level, communication among subsystems using coupling variables,
and a system-level coordination to ensure overall compatibility among subsystems. In
some cases, an added motivation for decomposition in MDO is to establish a mathe-
matical formulation of the design problem that mimics design organizations and that
promotes discipline autonomy [34, 57].

A decomposition approach to design has several important advantages. First, it
manages complexity by performing computations at the local level (e.g., local opti-
mization with discipline-specific design variables) and passing only the needed cou-
pling information. Second, it permits the use of tailored optimization and solver
strategies on different parts of the system (e.g., gradient-based optimization for dis-
ciplines with adjoint information, gradient-free optimization methods for disciplines
with noisy objective functions). These subsystem optimizations can even be run on
different computational platforms. Third, it permits disciplinary/subsystem experts
to infuse their disciplinary expertise into the design of the corresponding part of
the system, while accounting for interactions with other parts of the system through
coupling variables. In this paper, we propose a distributed formulation for a de-
composition approach to UQ with the goal of realizing similar advantages—in sum,
decomposition can be an effective strategy for complex systems comprising multiple
subcomponents or submodels, where it may be infeasible to achieve tight integration
around which a UQ outer loop is wrapped.

Decomposition approaches are already a part of UQ in several settings with dif-
ferent goals. Alexander, Garcia, and Tartakovsky develop hybrid (multiscale) meth-
ods to decompose stochastic models into particle models and continuum stochastic
PDE models, where interface coupling models are introduced to reconcile the noise
(uncertainty) generated in both pieces [1, 2, 3]. Recent work has also considered
the combination of domain decomposition methods and UQ, with a primary mo-
tivation to achieve computational efficiency by parallelizing the process of solving
stochastic PDEs [47, 26]. Sarkar, Benabbou, and Ghanem introduce a domain de-
composition method for solving stochastic PDEs [47], using a combination of Schur-
complement-based domain decomposition [21] for the spatial domain and orthogonal
decompositions of stochastic processes (i.e., polynomial chaos decomposition [24])
for the stochastic domain. Hadigol et al. consider coupled domain problems with
high-dimensional random inputs [26], where the spatial domain is decomposed by fi-
nite element tearing and interconnecting [22], while the stochastic space is treated
through separated representations [30]. Arnst et al. also consider stochastic modeling
of coupled problems, focusing on the probabilistic information that flows between sub-
system components [6, 7, 8]. They propose a method to reduce the dimension of the
coupling random variables, using polynomial chaos expansion and Karhunen–Loève
(KL) decomposition. For problems with high-dimensional coupling, the method of
Arnst et al. could be applied to first reduce the coupling dimension before using our
distributed UQ approach.

Here, we take a different approach that is motivated by decomposition-based de-
sign approaches. Just as the design decomposition approaches discussed above com-
bine local optimization with overall system coordination, our domain-decomposed un-
certainty quantification (DDUQ) approach combines UQ at the local subsystem level
with a system-level coordination. The system-level coordination is achieved through
importance sampling [51, 52]. Our primary goal is not to improve computational
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efficiency—although indeed, our DDUQ approach could be combined with tailored
surrogate models at the local subsystem level. Rather, through decomposing the un-
certainty analysis task, we aim to realize advantages similar to those in the design
setting. First, we aim to manage complexity by conducting stochastic analysis at the
local level, avoiding the need for full integration of all parts of the system and thus
making UQ accessible for those systems that cannot be tightly integrated. Second, we
aim to break up the stochastic analysis task so that different strategies (e.g., different
sampling strategies, different surrogate modeling strategies) can be used in different
parts of the system, thus exploiting problem structure as much as possible. Third,
we aim to move UQ from the system level to the disciplinary/subsystem group, thus
infusing disciplinary expertise, ownership, and autonomy.

In this paper, we build upon the distributed method for forward propagation of
uncertainty introduced by Amaral, Allaire, and Willcox [4]. We develop a mathemat-
ical framework using iterative domain decomposition. The combination of domain
decomposition and importance sampling leads to a new approach that permits un-
certainty analysis of each subdomain independently in an “offline” phase, followed
by assembly of global uncertainty results using precomputed local information in an
“online” phase. In section 2, we present the general problem setup. Section 3 reviews
iterative domain decomposition methods for deterministic PDEs and presents our
notation. Section 4 presents the DDUQ offline and online algorithms. Model reduc-
tion techniques for efficient handling of interface conditions are discussed in section 5,
and a summary of our full approach is presented in section 6. Numerical studies are
discussed in section 7. Finally, section 8 concludes the paper.

2. Problem setup. Let D ⊂ R
d (d = 1, 2, 3) denote a spatial domain which

is bounded, connected, and with a polygonal boundary ∂D (for d = 2, 3), and let
x ∈ R

d denote a spatial variable. Let ξ be a vector which collects a finite number of
random variables. The image of ξ is denoted by Γ and its probability density function
(PDF) is denoted by πξ(ξ). The physics of problems considered in this paper are
governed by a PDE over the domain D and boundary conditions on the boundary
∂D. The global problem solves the governing equations which are stated as follows:
find u(x, ξ) : D × Γ → R such that

L (x, ξ;u (x, ξ)) = f(x, ξ) ∀(x, ξ) ∈ D × Γ,(2.1)

b (x, ξ;u (x, ξ)) = g(x, ξ) ∀(x, ξ) ∈ ∂D × Γ,(2.2)

where L is a partial differential operator and b is a boundary operator, both of which
can have random coefficients. f is the source function and g specifies the boundary
conditions; these functions may also depend on random variables.

Our domain D can be represented by a finite number, M , of subdomains (compo-
nents), i.e., D = ∪M

i=1Di. We consider the case where the intersection of two subdo-
mains can only be a connected interface with positive (d− 1)-dimensional measure or
an empty set. For a subdomain Di, ∂Di denotes the set of its boundaries, and Λi de-
notes the set of its neighboring subdomain indices, i.e., Λi := {j | j ∈ {1, . . . ,M}, j �=
i and ∂Dj ∩ ∂Di �= ∅}. Moreover, the boundary set ∂Di can be split into two parts:
exterior boundaries ∂exDi := ∂Di ∩ ∂D, and interfaces ∂inDi := ∪j∈Λi{∂jDi} where
∂jDi := ∂Di∩∂Dj , so that ∂Di = ∂exDi∪∂inDi. We label an interface ∂jDi ∈ ∂inDi

with the index pair (i, j ); then, grouping all interface indices associated with all
subdomains {Di}Mi=1 together, we define Λ := {(i, j ) | i ∈ {1, . . . ,M} and j ∈ Λi}.
In this paper, it is also assumed that two different interfaces do not connect, i.e.,
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D1 D2

�∂exD1 �∂exD2

�∂2D1
� ∂1D2

Fig. 1. Example of a two-subdomain system: D = D1 ∪ D2, ∂inD1 = ∂2D1, ∂inD2 = ∂1D2,
Λ1 = {2}, Λ2 = {1}, and Λ = {(1, 2), (2, 1)}.

∂jDi ∩ ∂kDi = ∅ for j �= k. A notional example demonstrating this notation for two
subdomains with single interface is shown in Figure 1.

In this paper, we assume that the random vector ξ can be decomposed into ξT =
[ξT1 , . . . , ξ

T
M ]. Each ξi is a vector collecting Ni random variables (Ni is a positive

integer and ξi ∈ R
Ni), and it is associated with a spatial subdomain Di. For each ξi,

its image is denoted by Γi and its local joint PDF is denoted by πξi(ξi).
We also define output quantities of interest. Our UQ task is to compute the un-

certainty in outputs of interest, characterized by their PDFs and statistics of interest
(mean, variance, etc.), as a result of uncertainty in the input parameters ξ. In the
following, we develop our methodology for the case where the outputs are locally de-
fined on each subdomain. Each output is denoted by yi (u(x, ξ)|Di ), i = 1, . . . ,M , and
can be any quantity (e.g., integral quantities, nodal point values) provided it depends
only on the solution in one local subdomain. However, our approach also applies to
more general situations, such as outputs with contributions from multiple neighboring
subdomains; the extension and application to such a case is presented in section 7.8.

In the next section, we present an iterative domain decomposition method for
deterministic problems, then show how this framework can be combined with impor-
tance sampling to achieve a domain-decomposed approach to UQ.

3. Domain decomposition for deterministic problems. We review domain
decomposition methods based on subdomain iterations for deterministic PDEs, fol-
lowing the presentation in [45]. In this section, we consider a realization of the random
vector ξ; (2.1)–(2.2) then becomes a deterministic problem. Let {gi,j(x, τj,i)}(i,j )∈Λ

denote interface functions, that is, functions defined on the interfaces {∂jDi}(i,j )∈Λ.
Each gi,j(x, τj,i) is dependent on a vector parameter τj,i ∈ R

Nj,i , where Nj,i denotes
the dimension of τj,i. The parameter τj,i is used to describe interface data exchange
between subdomains (details are in the following). For a given subdomain Di, τj,i is
called an interface input parameter, and τi,j is an interface output parameter. Group-
ing all the interface input parameters for Di together, we define an entire interface
input parameter τi ∈ R

Ni with Ni =
∑

j∈Λi
Nj,i such that

τi := ⊗j∈Λiτj,i,

where ⊗ combines vectors as follows:

τj1,i ⊗ τj2,i :=

⎧⎪⎨
⎪⎩

[
τTj1,i , τ

T
j2,i

]T
if j1 < j2,[

τTj2,i , τ
T
j1,i

]T
if j1 > j2,

τj1,i if j1 = j2.

Taking the two-subdomain system in Figure 1, for example, τ1,2 represents inter-
face data transferred from D1 to D2, and so it is the interface input parameter for
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D2 and the interface output parameter for D1. Since there are only two subdomains
in this example, we have τ1 = τ2,1 and τ2 = τ1,2.

Before presenting the domain decomposition method, we introduce decomposed
local operators {Li := L|Di}Mi=1 and {bi := b|Di}Mi=1 and local functions {fi :=
f |Di}Mi=1 and {gi := g|Di}Mi=1, which are global operators and functions restricted
to each subdomain Di. Following [45], the domain decomposition methodology based
on subdomain iterations proceeds as follows. Given initial guess τ0i,j (e.g., τ0i,j = 0)
for each interface parameter, for each iteration step k = 0, 1, . . ., we solve M local
problems: find u(x, ξi, τ

k
i ) : Di → R for i = 1, . . . ,M , where τki = ⊗j∈Λiτ

k
j,i is the

interface input parameter on the kth subdomain iteration, such that

Li

(
x, ξi;u

(
x, ξi, τ

k
i

))
= fi (x, ξi) in Di,(3.1)

bi
(
x, ξi;u

(
x, ξi, τ

k
i

))
= gi (x, ξi) on ∂exDi,(3.2)

bi,j
(
x, ξi;u

(
x, ξi, τ

k
i

))
= gi,j

(
x, τkj,i

)
on ∂jDi ∀j ∈ Λi.(3.3)

Equation (3.3) defines the boundary conditions on interfaces and bi,j is an appropriate
boundary operator posed on the interface ∂jDi. The interface parameters are updated
for the next iteration by taking interface data of each local solution. We denote this
updating process by the functional hi,j such that

τk+1
i,j := hi,j

(
u
(
x, ξi, τ

k
i

))
.(3.4)

For simplicity, (3.4) is rewritten as a function hi,j : R
Ni+Ni → R such that

τk+1
i,j := hi,j

(
ξi, τ

k
i

)
,(3.5)

where, in the standard domain decomposition implementation, evaluating the values
of hi,j involves solving local PDEs. In the following, hi,j is referred to as a coupling
function.

In this paper, we assume that u(x, ξi, τ
k
i ) and u(x, ξ )|Di belong to a normed space

with spatial function norm ‖ · ‖Di . The following standard (domain decomposition)
DD-convergence definition [45] can be introduced.

Definition 3.1 (DD-convergence). A domain decomposition method is conver-
gent if

lim
k→∞

∥∥∥u (x, ξi, τki )− u (x, ξ)
∣∣
Di

∥∥∥
Di

→ 0, i = 1, . . . ,M.(3.6)

The quantity τ∞i := ⊗j∈Λiτ
∞
j,i (where τ∞j,i := limk→∞ τkj,i) is called a target inter-

face input parameter for subdomain Di, and u(x, ξi, τ
∞
i ) is a local stationary solution.

From (3.6), each stationary solution is consistent with the solution of the global PDEs
(2.1)–(2.2) in the sense that u(x, ξi, τ

∞
i ) = u(x, ξ)|Di .

In order to guarantee the DD-convergence condition in Definition 3.1, relaxation
may be required at each updating step, which is to modify (3.5) as

τk+1
i,j = θi,jhi,j

(
ξi, τ

k
i

)
+ (1− θi,j)τ

k
i,j ,(3.7)

where the θi,j are nonnegative acceleration parameters (see [45, pp. 118–119] for
details).
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4. DDUQ. Our goal is to peform propagation of uncertainty from the un-
certain inputs ξ, with specified joint input PDF πξ(ξ), to the outputs of interest
{yi(u(x, ξ)|Di )}Mi=1. In this section we show how uncertainty propagation via Monte
Carlo sampling can be combined with the domain decomposition framework presented
in section 3. We first present the DDUQ algorithm, then analyze its convergence
properties.

4.1. DDUQ algorithm. We introduce a domain-decomposed uncertainty anal-
ysis approach based on the methodology of importance sampling [51, 52], which can
be decomposed into two stages: offline (initial sampling) and online (reweighting) [4].
The offline stage of our method carries out Monte Carlo simulation at the local sub-
domain level. The online stage uses a reweighting technique to satisfy the interface
conditions and ensure solution compatibility at the domain level. The offline stage in-
volves local PDE solves which can be expensive, whereas the online stage avoids PDE
solves and thus is cheap. To begin with, we denote the joint PDF of ξi and τ∞i (ξ) by
πξi,τi(ξi, τi), which is referred to as the target input PDF for subdomain Di.

In the offline stage of DDUQ, we first specify a proposal input PDF from which
the samples will be drawn. We denote the proposal input PDF by pξi,τi(ξi, τi). The
proposal input PDF must be chosen so that its support is large enough to cover the
support of τ∞i (ξ). Provided this condition on the support is met, any proposal input
PDF can be used; however, the better the proposal (in the sense that it generates
sufficient samples over the support of the target input PDF) the better the perfor-
mance of the importance sampling. A poor choice of proposal input PDF will lead to
many wasted samples (i.e., requiring many local PDE solves). In our case, since the
PDF of ξi is given, only the contribution of τ∞i (ξ) in πξi,τi(ξi, τi) is unknown. Thus,
we choose the proposal PDF pξi,τi(ξi, τi) = πξi(ξi)pτi(τi), where pτi(τi) is a proposal
for τi, chosen to be any PDF whose support is large enough to cover the expected
support of τ∞i (ξ).

The next step, still in the offline phase, is to perform UQ on each local system

independently. This involves generating a large number Ni of samples {(ξ(s)i , τ
(s)
i )}Ni

s=1

drawn from pξi,τi(ξi, τi) for each subdomain i = 1, . . . ,M , where the superscript (s)

denotes the sth sample. We then compute the local solutions {u(x, ξ(s)i , τ
(s)
i )}Ni

s=1 by
solving the following deterministic problem for each sample:

Li

(
x, ξ

(s)
i ;u

(
x, ξ

(s)
i , τ

(s)
i

))
= fi

(
x, ξ

(s)
i

)
in Di,(4.1)

bi

(
x, ξ

(s)
i ;u

(
x, ξ

(s)
i , τ

(s)
i

))
= gi

(
x, ξ

(s)
i

)
on ∂exDi,(4.2)

bi,j

(
x, ξ

(s)
i ;u

(
x, ξ

(s)
i , τ

(s)
i

))
= gi,j

(
x, τ

(s)
j,i

)
on ∂jDi ∀j ∈ Λi,(4.3)

where τ
(s)
i = ⊗j∈Λiτ

(s)
j,i . Once the local solutions are computed, we evaluate the

local outputs of interest {yi(u(x, ξ(s)i , τ
(s)
i ))}Ni

s=1 and store them. The offline process
is summarized in Algorithm 1.

In the online stage of DDUQ, we first generate Non samples, {ξ(s)}Non
s=1, of the

joint PDF of inputs πξ(ξ). For each sample ξ(s), we use the domain decomposition
iteration to evaluate the corresponding interface parameters τ∞i,j(ξ

(s)). The procedure
is as follows:

1. set k = 0; take initial guesses {τ0i,j(ξ(s))}(i,j )∈Λ for the interface parameters;

2. evaluate each coupling function hi,j(ξ
(s)
i , τki (ξ

(s))) (see (3.5)) for (i, j ) ∈ Λ;
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Algorithm 1. DDUQ offline.

For each local subdomain Di, i = 1, . . . ,M , the offline stage has the following
steps:

1: Define a proposal PDF pξi,τi(ξi, τi).

2: Generate samples
{(

ξ
(s)
i , τ

(s)
i

)}Ni

s=1
of pξi,τi(ξi, τi), where Ni is large.

3: Compute local solutions
{
u
(
x, ξ

(s)
i , τ

(s)
i

)}Ni

s=1
by solving (4.1)–(4.3) for each sam-

ple.

4: Evaluate the local system outputs
{
yi

(
u
(
x, ξ

(s)
i , τ

(s)
i

))}Ni

s=1
.

Algorithm 2. DDUQ online.

1: Generate samples
{
ξ(s)

}Non

s=1
of the PDF πξ(ξ).

2: for s = 1 : Non do
3: Initialize the interface parameters τ0i,j(ξ

(s)) and τ1i,j(ξ
(s)) for (i, j ) ∈ Λ, such

that max(i,j )∈Λ(‖τ1i,j(ξ(s))− τ0i,j(ξ
(s))‖∞) > tol.

4: Set k = 0.
5: while max(i,j )∈Λ(‖τk+1

i,j (ξ(s))− τki,j(ξ
(s))‖∞) > tol do

6: for i = 1, . . . ,M do
7: for j ∈ Λi do

8: τk+1
i,j (ξ(s)) = θi,jhi,j

(
ξ
(s)
i , τki (ξ

(s))
)
+ (1 − θi,j)τ

k
i,j(ξ

(s)).

9: end for
10: end for
11: Update k = k + 1.
12: end while
13: Set τ∞i,j(ξ

(s)) = τki,j(ξ
(s)) for (i, j ) ∈ Λ.

14: end for
15: Estimate a PDF π̂ξi,τi(ξi, τi) from the samples {(ξ(s)i , τ∞i (ξ(s)))}Non

s=1, for each sub-
domain Di, i = 1, . . . ,M .

16: Reweight the precomputed offline local outputs: {w(s)
i yi(u(x, ξ

(s)
i , τ

(s)
i ))}Ni

s=1 with

w
(s)
i =

π̂ξi,τi
(ξ

(s)
i ,τ

(s)
i )

pξi,τi
(ξ

(s)
i ,τ

(s)
i )

, for each subdomain Di, i = 1, . . . ,M .

3. update each interface parameter: τk+1
i,j (ξ(s)) = θi,jhi,j

(
ξ
(s)
i , τki (ξ

(s))
)
+ (1 −

θi,j)τ
k
i,j(ξ

(s)) (see (3.7)) for (i, j ) ∈ Λ;
4. increment k; repeat steps 2 and 3 until an error indicator of the domain

decomposition iteration is below some given tolerance tol.

To determine convergence in step 4, we use the error indicator max(i,j )∈Λ(‖τk+1
i,j (ξ(s))−

τki,j(ξ
(s))‖∞), where ‖ · ‖∞ is the vector infinity norm. When this error indicator

is sufficiently small, the iteration terminates and we take τ∞i,j(ξ
(s)) = τki,j(ξ

(s)) for

(i, j ) ∈ Λ and τ∞i (ξ(s)) = τki (ξ
(s)) for i = 1, . . . ,M . We note that this may introduce

additional approximation errors; however, by choosing a small value of the tolerance
tol, the effects of these errors can be made small.

After the above process, we have obtained a set of samples {(ξ(s)i , τ∞i (ξ(s)))}Non

s=1

drawn from each local target input PDF πξi,τi(ξi, τi) for i = 1, . . . ,M . We next
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estimate each local target input PDF from the samples using a density estimation
technique, such as kernel density estimation (KDE) [27]. (See [4] for a detailed dis-
cussion of other density estimation methods.) In the following, the estimated target
input PDF is denoted by π̂ξi,τi(ξi, τi). Under an assumption that the underlying PDF
is uniformly continuous in an unbounded domain and with an appropriate choice
of density estimation method, the estimated PDF converges to the exact PDF as
Non → ∞, i.e., limNon→∞ π̂ξi,τi(ξi, τi) = πξi,τi(ξi, τi). See [27, 58] for the convergence
analysis of KDE. However, we note that for a finite set of samples, KDE can be prone
to errors, especially for high-dimensional data.

The final step of the DDUQ online stage is to use importance sampling to reweight

the precomputed outputs {yi(u(x, ξ(s)i , τ
(s)
i ))}Ni

s=1 that we generated by PDE solves in

the offline stage. The weights, w
(s)
i , are computed using standard importance sampling

[52], by taking the ratio of the estimated target PDF to the proposal PDF for each
local subdomain:

w
(s)
i =

π̂ξi,τi

(
ξ
(s)
i , τ

(s)
i

)

pξi,τi

(
ξ
(s)
i , τ

(s)
i

) , s = 1, . . . , Ni, i = 1, . . . ,M.

We will show in the next subsection that the probability computed from these weighted

samples {w(s)
i yi(u(x, ξ

(s)
i , τ

(s)
i ))}Ni

s=1 is consistent with the true distributions of the
outputs.

The details of the online computation strategy are summarized in Algorithm 2.
We note that in order to achieve our goal of having no PDE solves in the online stage
of the DDUQ algorithm, we still require a way to evaluate each coupling function
hi,j (see (3.5)) in the online stage without requiring PDE solves. We address this
by building surrogate models for the coupling functions {hi,j}(i,j )∈Λ in the offline
stage. Section 5 details the building of these coupling surrogates, which are denoted
by {h̃i,j}(i,j )∈Λ in the following.

4.2. Convergence analysis. For the following analysis we consider the outputs
of interest {yi(u(x, ξ)|Di)}Mi=1 of (2.1)–(2.2) to be scalar. It is straightforward to
extend the analysis to the case of multiple outputs. For a given number a, we denote
the actual probability of yi(u(x, ξ)|Di) ≤ a by P (yi ≤ a), i.e.,

P (yi ≤ a) :=

∫
Γa
i

πξ(ξ) dξ,

where

Γa
i :=

{
ξ
∣∣∣ξ ∈ Γ, yi

(
u (x, ξ)

∣∣
Di

)
≤ a

}
.

Next, we denote the support of the local proposal input PDF pξi,τi(ξi, τi) by ΓP,i

and the support of the local target input PDF πξi,τi(ξi, τi) by ΓT,i. The importance
sampling approach requires that pξi,τi(ξi, τi) is chosen so that ΓT,i ⊆ ΓP,i. We define
the probability of the local output yi(u(x, ξi, τi)) associated with the local target input
PDF πξi,τi(ξi, τi) by

P̃ (yi ≤ a) :=

∫
Γ̃a
i

πξi,τi (ξi, τi) dξi dτi,(4.4)
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where

Γ̃a
i :=

{[
ξi
τi

] ∣∣∣∣
[

ξi
τi

]
∈ ΓT,i, yi (u (x, ξi, τi)) ≤ a

}
.(4.5)

At the last step of the DDUQ algorithm (line 16 of Algorithm 2), weighted samples
are obtained. We next define the probability associated with the weighted samples.
To begin, we consider the exact weights:

W
(s)
i =

πξi,τi

(
ξ
(s)
i , τ

(s)
i

)

pξi,τi

(
ξ
(s)
i , τ

(s)
i

) , s = 1, . . . , Ni, i = 1, . . . ,M,(4.6)

which are associated with the exact local target input PDF πξi,τi(ξi, τi) rather than
the estimated PDF π̂ξi,τi(ξi, τi) on line 15 of Algorithm 2. With these exact weights,
we define

PWi(yi ≤ a) :=

∑Ni

s=1 W
(s)
i Ĩai (ξ

(s)
i , τ

(s)
i )∑Ni

s=1 W
(s)
i

,(4.7)

where Ĩai (·, ·) is an indicator function for local outputs:

Ĩai (ξi, τi) :=

{
1 if yi (u (x, ξi, τi)) ≤ a,
0 if yi (u (x, ξi, τi)) > a.

(4.8)

For the DDUQ outputs (see line 16 of Algorithm 2) with weights {w(s)
i }Ni

s=1, obtained
from the estimated target PDFs π̂ξi,τi(ξi, τi) for i = 1, . . . ,M , we define

Pwi(yi ≤ a) :=

∑Ni

s=1 w
(s)
i Ĩai (ξ

(s)
i , τ

(s)
i )∑Ni

s=1 w
(s)
i

.(4.9)

In the following, we show that PWi(yi ≤ a) approaches the actual probability
P (yi ≤ a) as the offline sample size Ni (i = 1, . . . ,M) increases. The analysis takes
two steps: the first step is to prove P̃ (yi ≤ a) = P (yi ≤ a) and the second step is to
show PWi(yi ≤ a) → P̃ (yi ≤ a) as Ni goes to infinity.

Lemma 4.1. If the DD-convergence condition is satisfied for all ξ ∈ Γ, then for
any given number a, P (yi ≤ a)=P̃ (yi ≤ a).

Proof. Let {ξ(s)}Ns=1 be N realizations of ξ. Using the convergence property of
the Monte Carlo integration [14], we have

P (yi ≤ a) =

∫
Γa
i

πξ(ξ) dξ

= lim
N→∞

1

N

N∑
s=1

Iai

(
ξ(s)

)
,(4.10)

where Iai (·) is an indicator function defined by

Iai (ξ) :=

⎧⎨
⎩

1 if yi

(
u (x, ξ)

∣∣
Di

)
≤ a,

0 if yi

(
u (x, ξ)

∣∣
Di

)
> a.
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Since the DD-convergence condition is assumed to be satisfied for all ξ ∈ Γ, we have
u(x, ξi, τ

∞
i (ξ)) = u(x, ξ)|Di . Thus, Iai (ξ) = Ĩai (ξi, τ

∞
i (ξ)). From section 4.1, we have

that {(ξ(s)i , τ∞i (ξ(s)))}Ns=1 are realizations of πξi,τi (ξi, τi). So,

lim
N→∞

1

N

N∑
s=1

Iai

(
ξ(s)

)
= lim

N→∞
1

N

N∑
s=1

Ĩai

(
ξ
(s)
i , τ∞i (ξ(s))

)

=

∫
Γ̃a
i

πξi,τi (ξi, τi) dξi dτi = P̃ (yi ≤ a).(4.11)

Combining (4.10) and (4.11), this lemma is proved.
Theorem 4.2. If the DD-convergence condition is satisfied for all ξ ∈ Γ, and

the support of the local proposal input PDF pξi,τi(ξi, τi) covers that of the local target
input PDF πξi,τi(ξi, τi), i.e., ΓP,i ⊇ ΓT,i for i = 1, . . . ,M , then for any given number
a, the following equality holds:

lim
Ni→∞

PWi(yi ≤ a) = P (yi ≤ a).(4.12)

Proof. Our proof follows the standard importance sampling convergence analysis
techniques [4, 52]. From (4.6)–(4.7),

PWi(yi ≤ a) =

∑Ni

s=1 W
(s)
i Ĩai (ξ

(s)
i , τ

(s)
i )∑Ni

s=1 W
(s)
i

=

1
Ni

∑Ni

s=1

πξi,τi

(
ξ
(s)
i ,τ

(s)
i

)

pξi,τi

(
ξ
(s)
i ,τ

(s)
i

) Ĩai (ξ
(s)
i , τ

(s)
i )

1
Ni

∑Ni

s=1

πξi,τi

(
ξ
(s)
i ,τ

(s)
i

)

pξi,τi

(
ξ
(s)
i ,τ

(s)
i

)
.

Using the convergence property of Monte Carlo integration [14] and due to ΓT,i ⊆ ΓP,i,
we have

lim
Ni→∞

PWi(yi ≤ a) =

∫
ΓP,i

πξi,τi
(ξi,τi)

pξi,τi
(ξi,τi)

Ĩai (ξi, τi)pξi,τi (ξi, τi) dξi dτi∫
ΓP,i

πξi,τi
(ξi,τi)

pξi,τi
(ξi,τi)

pξi,τi (ξi, τi) dξi dτi

=

∫
ΓT,i

πξi,τi (ξi, τi) Ĩ
a
i (ξi, τi) dξi dτi∫

ΓT,i
πξi,τi (ξi, τi) dξi dτi

=

∫
Γ̃a
i

πξi,τi (ξi, τi) dξi dτi

= P̃ (yi ≤ a).(4.13)

Using Lemma 4.1 and (4.13), this theorem is proved.
Remark 4.3. If we have a strongly convergent density estimation of local target

input PDFs, i.e., limNon→∞ π̂ξi,τi(ξi, τi) = πξi,τi(ξi, τi) for i = 1, . . . ,M , then from
(4.6)–(4.9), for any given number a, we have PWi(yi < a) = Pwi(yi < a) as Non →
∞. This combined with Theorem 4.2 leads to the overall convergence of the DDUQ
approach, i.e., limNi→∞,Non→∞ Pwi(yi ≤ a) = P (yi ≤ a). KDE is proved to be
strongly convergent in [27, 58], when the underlying PDF is uniformly continuous
with an unbounded range. However, it still remains an open question to prove the
strong convergence of density estimation techniques for PDFs with bounded ranges.
We will discuss this again in section 7.2.
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5. Reduced-order modeling for coupling functions. In this section we de-
velop an efficient surrogate model for each coupling function hi,j , (i, j ) ∈ Λ. This
model is needed so that the online DDUQ process of assimilating local sample informa-
tion to the system level can be conducted without PDE solves. The approach consists
of the following two steps. First, we construct a proper orthogonal decomposition
(POD) basis in which we represent the interface function gi,j . With this representa-
tion, the interface parameter τi,j becomes the coefficients of the POD expansion and
thus has a reduced dimension. Second, we build surrogate models for hi,j . The first
step is important to keep the dependency of the surrogates low dimensional, and the
interface parameters must be low dimensional since we need to estimate their PDFs
in the online stage.

5.1. Dimension reduction for interface parameters. We consider solution
of the local problems (3.1)–(3.3) or (4.1)–(4.3) by a numerical discretization method,
such as the finite element method. For a finite element discretization, an interface
function gi,j defined on an interface ∂jDi, (i, j ) ∈ Λ, has the following form:

gi,j =

Ni,j∑
t=1

ci,jt φi,j
t (x),(5.1)

where {φi,j
t (x)}Ni,j

t=1 are finite element basis functions on the interface ∂jDi, Ni,j is

the number of basis functions, and {ci,jt }Ni,j

t=1 are their corresponding coefficients. One
option would be to parameterize the interface functions by the finite element coef-
ficients, i.e., the interface parameters introduced in section 3 would be defined as
τi,j = [ci,j1 , . . . , ci,jNi,j

]T . However, since the finite element basis functions are depen-
dent on the spatial grid, this choice of parameterization would typically lead to a large
dimension Ni,j of the interface parameters.

To obtain a lower-dimensional representation of the interface parameters, we use
the POD method [25, 31, 50]. That is, we first generate a small number Ñ of real-

izations {ξ(s)}Ñs=1 of the random input vector ξ. Next, we carry out standard domain
decomposition iterations (see section 3) for each realization. This process generates
a sample (or so-called POD snapshot) of the (discretized) interface function corre-

sponding to each sampled value of ξ: {gi,j(x, τ∞j,i (ξ(s)))}Ñs=1. Applying the POD to
this snapshot set results in a POD basis for the interface functions. Then, in (5.1) we

let {φi,j
t (x)}Ni,j

t=1 refer to the POD basis and {ci,jt }Ni,j

t=1 become the corresponding POD
coefficients. Due to the compression typically obtained using POD, the dimensionNi,j

of the interface parameter τi,j will now be small (and in particular independent of the
spatial discretization dimension). This approximation of the interface functions in a
reduced basis is also used in the static condensation reduced basis method, where it
is referred to as “port reduction” [18]. Another option for reducing the dimension of
the coupling variables is to use the method of Arnst et al. [6].

5.2. Surrogate modeling. In this subsection, we build cheap surrogates
{h̃i,j}(i,j )∈Λ to approximate the coupling functions {hi,j}(i,j )∈Λ. For simplicity, h(ζ)
is used to generically denote a function dependent on a n-dimensional vector variable
ζ = [ζ1, . . . , ζn]

T , where ζi denotes the ith element of the vector ζ. A response surface
approximation for h(ζ) is constructed by fitting a polynomial to a set of samples. For
example, a linear response surface approximation with n + 1 degrees of freedom of
h(ζ) is
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h̃(ζ) := a0 +

n∑
i=1

aiζi,

where the coefficients {ai}ni=1 are determined using a least squares fit to sample points.
Samples of the coupling functions {hi,j}(i,j )∈Λ can be computed in the offline

stage. As shown in Algorithm 1, for each subdomain Di, i = 1, . . . ,M , a large number

of local solutions {u(x, ξ(s)i , τ
(s)
i )}Ni

s=1 are generated, and the values of the coupling

functions {hi,j(ξ
(s)
i , τ

(s)
i )}j∈Λi corresponding to the sample points {(ξ(s)i , τ

(s)
i )}Ni

s=1 can
be obtained by postprocessing the local solutions.

We note that there are other popular surrogate modeling methods, which for
some problems may provide more accurate approximations than response surface
methods (e.g., radial basis function methods [49] and Kriging methods [46]). An-
other option, particularly for complicated coupling function behavior, would be to
use a goal-oriented model reduction technique [13]. In the numerical studies of this
paper, we use the linear response surface method and the Kriging method through
the MATLAB toolbox DACE [41] to construct the surrogates {h̃i,j}(i,j )∈Λ.

6. DDUQ summary. To summarize the strategies introduced in sections 4 and
5, the full approach of DDUQ comprises the following three steps:

pre-step: generate POD basis for interface functions;
offline step: generate local solution samples and construct surrogates for the coupling

functions;
online step: estimate target input PDFs using surrogates and reweight offline output

samples.
The pre-step is cheap, since although it performs standard domain decomposition
iterations, the number of input samples is small. In the offline stage, expensive com-
putational tasks are fully decomposed into subdomains, i.e., there is no data exchange
between subdomains. The online stage is relatively cheap, since no PDE solve is re-
quired. The online stage requires density estimation, which has a computational cost
that scales linearly with the sample size when using efficient density estimation tech-
niques [36, 62]. However, in the numerical studies of this paper, we use the traditional
KDE as implemented in the MATLAB KDE toolbox [32] with cost quadratically de-
pendent on the sample size. This full approach is also summarized in Figure 2, where
communication refers to data exchange between subdomains.

For the problems of interest (systems governed by PDEs), the cost of the DDUQ
approach is dominated by the local PDE solves in the offline step. We perform a
rough order of magnitude analysis of the computational costs by taking the cost of
each local PDE solve to be Csolve (i.e., the costs of all local PDE solves are taken to be
equal for simplicity). The dominant cost of DDUQ is the total number of local PDE

solves,
∑M

i=1 NiCsolve. If we consider equal offline sample sizes for each subdomain,
Ni = Noff for all subdomains {Di}Mi=1, then this cost can be written as MNoffCsolve.

For comparison, we consider the corresponding cost of system-level Monte Carlo
combined with parallel domain decomposition forN samples. To simplify the analysis,
assume that KDD domain decomposition iterations are performed for each PDE solve.
In practice, the number of domain decomposition iterations may vary from case to
case, but they will typically be of similar magnitude. The cost of the system-level
Monte Carlo is then KDDMNCsolve.

For the same number of samples, N = Noff , the cost of the system-level Monte
Carlo is a factor of KDD times larger than the DDUQ cost. This is because the
system-level Monte Carlo solves local PDEs at every domain decomposition iteration
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Pre-step (cheap)

• Generate interface POD basis.

(Solve PDEs, has communication, but a few samples)

Offline step for D1 (expensive)

• Generate local solution samples.

• Construct coupling surrogates.

(Solve PDEs, no communication)

Offline step for DM (expensive)

• Generate local solution samples.

• Construct coupling surrogates.

(Solve PDEs, no communication)

� � �

Online step (cheap)

• Estimate target input PDFs using coupling surrogates.

• Re-weight offline output samples.

(No PDE solve, has communication)

���������

����������

���������

����������

Fig. 2. DDUQ summary.

step. In contrast, DDUQ only solves the local PDEs once at each sample point in the
offline step and uses cheap surrogates to perform the domain decomposition iterations
in the online step. We note that the system-level Monte Carlo could also be made
more efficient by combining surrogate models with parallel domain decomposition,
but this situation is not considered in this paper. However, it is important to note
that this comparison does not tell the full story of the relative computational costs of
DDUQ, since setting N = Noff will not result in the same level of accuracy between the
system-level Monte Carlo and DDUQ estimates. This is because the DDUQ approach
introduces a statistical inefficiency through the importance sampling step.

To complete the comparison, we consider the effective sample size [33, 40, 17] for
each subdomain Di, defined as

(6.1) N eff
i =

(∑Noff

s=1 w
(s)
i

)2

∑Noff

s=1

(
w

(s)
i

)2 , i = 1, . . . ,M.

The effective sample size takes on values 1 ≤ N eff
i ≤ Noff and is a measure of the qual-

ity of the proposal distribution relative to the target distribution. The smaller the
value of N eff

i , the more “wasted” samples drawn from the proposal distribution. We
cannot exactly quantify the effect on accuracy of the inefficiency introduced through
the importance sampling; however, a roughly fair comparison is to consider a system-
level Monte Carlo with N = N eff := min1≤i≤M N eff

i , where by choosing the minimum
effective sample size over all subdomains, we consider the worst case. Thus, our final
cost comparison is MNoffCsolve for DDUQ compared to KDDMN effCsolve for system-
level Monte Carlo. It can be seen now that the efficiency of the DDUQ approach
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depends very much on the quality of the proposals chosen for the local subdomain
sampling. If the proposal distributions are good representatives of the target distri-
butions and yield N eff � Noff/KDD, then DDUQ will be computationally competitive
with (or possibly even cheaper than) system-level Monte Carlo. If, however, the
proposals are chosen conservatively so as to result in N eff � Noff/KDD, then the de-
composition will incur a computational penalty. Even if this is the case, there may be
other advantageous reasons to employ a decomposition-based approach, as discussed
in section 1.

7. Numerical study. This section presents results for the DDUQ approach and
compares its performance with system-level Monte Carlo.

7.1. Problem setup. We illustrate the DDUQ approach using the following
diffusion problem. The governing equations considered are

−∇ · (a (x, ξ )∇u (x, ξ )) = f(x, ξ ) in D × Γ,(7.1)

∂u (x, ξ )

∂n
= 0 on ∂DN × Γ,(7.2)

a(x, ξ )
∂u (x, ξ )

∂n
= −b(x, ξ )u on ∂DR × Γ,(7.3)

where a is the permeability coefficient, b is the Robin coefficient, f is the source
function, ∂u/∂n is the outward normal derivative of u on the boundaries, ∂DN ∩∂DR

has measure zero, and ∂D = ∂DN ∪ ∂DR. Note that a, b, and f are dependent on
the system input vector ξ.

This stochastic diffusion equation is widely used in groundwater hydrology. As
discussed in [56], modeling groundwater flow in heterogeneous media composed of
multiple materials remains an active research area. Composite media models can typ-
ically be divided into the following three kinds [61]. First, the material locations are
assumed to be known with certainty but the permeability within each material is set
to a random field [42, 23]. Second, the locations of materials are treated as random
variables but the permeability within each material is considered to be deterministic
[37]. Finally, a two-scale representation of uncertainty considers both the locations of
materials and the permeability within each material to be random [38, 59, 60]. In [38],
a nonstationary spectral method was developed to approximate the statistics of solu-
tions of this two-scale model. However, the spectral method proposed in [38] requires
the random multimaterial distributions to have a uniform correlation structure and,
as a result, does not apply to problems with highly heterogeneous media. The random
domain decomposition method, proposed by Winter and Tartakovsky [59, 60], devel-
ops a general solution method for diffusion in highly heterogeneous media composed
of multiple materials.

In this section, we consider each material as a local component and test two
kinds of models: (1) one-scale model—fixed interfaces with random parameters within
each component; (2) two-scale model—random interfaces with random parameters
within each component. In the following test problems, we first consider three one-
scale models posed on two-dimensional spatial domains, with two, four, and seven
random parameters, respectively. Implementation details of the DDUQ approach are
demonstrated through the first test problem (with two parameters), then numerical
results are presented for all three test problems. Finally, we extend our approach to
solve a two-scale model posed on a one-dimensional spatial domain.

We apply the Monte Carlo method to the global problem (7.1)–(7.3) for the
purpose of generating reference results for comparison. The weak form of (7.1)–(7.3)
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is to find u(x, ξ) ∈ H1(D) := {u : D → R,
∫
D
u2 dD < ∞,

∫
D
(∂u/∂xl)

2 dD < ∞, l =
1, . . . , d} such that

(a∇u,∇v) + (bu, v)∂DR
= (f, v) ∀v ∈ H1(D).(7.4)

A finite element approximation of (7.4) is obtained by introducing a finite dimensional
space Xh(D) to approximate H1(D). We discretize in space using a bilinear finite
element approximation [11, 20] with a mesh size h = 1/16 for the two-dimensional
test problems and using a linear finite element approximation with 101 grid points on
each subdomain of the one-dimensional random domain decomposition test problem
in section 7.8.

7.2. Two-component system with two parameters. We consider the dif-
fusion problem posed on the spatial domain shown in Figure 1. In order to show
the dimensions, we re-plot this spatial domain in Figure 3. The Neumann boundary
condition (7.2) is applied on ∂DN := {(1, 5)× {0.75}} ∪ {(1, 5)× {1.25}}, while the
other boundaries are Robin boundaries ∂DR.

We consider a two-dimensional random parameter ξ = [ξ1, ξ2]
T . The permeability

coefficient, the Robin coefficient, and the source function are defined by

f(x, ξ ) = ξ1 when x ∈ [0, 1]× [0, 2],

f(x, ξ ) = 0 when x ∈ D \ [0, 1]× [0, 2],

a(x, ξ ) = 1 when x ∈ D1,

a(x, ξ ) = ξ2 when x ∈ D2,

b(x, ξ ) = 1 when x ∈ ∂DR,

where the random variables ξ1 and ξ2 are specified to be independently distributed as
follows: ξ1 is a truncated Gaussian distribution with mean 100, standard deviation
1, and range [80, 120], and ξ2 is a truncated Gaussian distribution with mean 1,
standard deviation 0.01, and range [0.9, 1.1]. We note that the convergence analysis
of KDE in [27] assumes an unbounded range for the random variables. However, in
our test problems we use bounded ranges for the distributions, reflecting constraints
on the values assumed by the underlying physical variables. This means that for our
problems, we cannot guarantee the convergence of the density estimation step in the
DDUQ algorithm and thus cannot theoretically guarantee the overall convergence of
the DDUQ approach as in section 4.2. Density estimation remains a limitation in the
approach—both in terms of the assumptions needed for its convergence and in its lack
of scalability to problems with more than a handful of random variables. We further
discuss this limitation in section 8.

D1 D2

�

(0,0)
�

(1,0)

�

(1,0.75)
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Fig. 3. Dimensions of the spatial domain with two components.
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The outputs of interest are defined by the integrals of the solution over the left
and the right boundaries of the domain, i.e.,

y1(ξ) =

∫
Z1

u(x, ξ) dx2,(7.5)

y2(ξ) =

∫
Z2

u(x, ξ) dx2,(7.6)

where x = [x1, x2]
T , Z1 := {x|x1 = 0, 0 ≤ x2 ≤ 2}, and Z2 := {x|x1 = 6, 0 ≤ x2 ≤ 2}.

In order to decompose the global problem (7.4), we use the parallel Dirichlet–
Neumann domain decomposition method [45, pp. 24–25]. That is, on subdomain D1,
we solve a local problem with a Dirichlet condition posed on ∂2D1, whereas we solve
a local problem with a Neumann condition posed on ∂1D2 for subdomain D2. The
coupling functions are

h2,1 := u (x, ξ2, τ2)
∣∣
∂1D2

,(7.7)

h1,2 :=
∂u (x, ξ1, τ1)

∂n

∣∣∣∣
∂2D1

.(7.8)

See [45, p. 13] for the weak form of the coupling functions. Equation (3.7) specifies
the definitions of the interface parameters τ1 and τ2 (since this test problem has only
two subdomains, we have τ1 = τ2,1 and τ2 = τ1,2); we set the acceleration parameters
to θ2,1 = 0.5 and θ1,2 = 0 for this problem.

7.3. DDUQ pre-step (generate POD interface bases). In numerical stud-
ies in this paper, the number of snapshots in the pre-step is set to Ñ = 10, and the
tolerance for the domain decomposition iteration is set to tol = 10−6. We collect
the 10 snapshots of each (discrete) interface function (see (3.3) and (5.1)), and com-
pute the corresponding POD basis that represents them. The POD singular values
for each interface function are plotted in Figure 4. It can be seen that the singular
values decrease quickly for both interface functions and that in both cases retaining
only the first singular vector to define the POD basis is sufficient to obtain accurate
interface surrogate models. The fact that only one POD vector is needed for each
interface function is a reflection of the simplicity of the solution along the interface
for this particular problem (in this case, the solution is close to constant along the
interface). Other problems may have more complicated interface behavior; this would
be revealed through the POD singular values, which would decay more slowly, indi-
cating that more basis vectors would be needed in the surrogate model. In this case,
our POD surrogate reduces the dimension of the interface parameters to one, i.e.,
τi,j = ci,j1 in section 5.1.

7.4. Implementation of the DDUQ offline and online methods. We now
implement the DDUQ offline and online strategies as described in the algorithms of
section 4.1. The first step of the offline stage defines a proposal PDF pξi,τi(ξi, τi)
for each subdomain Di. In the numerical experiments in this paper, we take each
proposal to be pξi,τi(ξi, τi) = πξi(ξi)pτi(τi), where πξi(ξi) is given and pτi(τi) is chosen
to be a uniform PDF. We set the range of pτi(τi) by first identifying the minimum and
maximum values of the sampled interface parameters in the pre-step. We define α̃i,j :=

mins=1:10(τ
∞
i,j(ξ

(s))) and β̃i,j := maxs=1:10(τ
∞
i,j(ξ

(s))). We set pτi(τi) ∼ U[αi,j , βi,j ],
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Fig. 4. Singular values for the pre-step interface parameter matrices for the two-parameter
problem: left, for interface function g2,1, and right, for interface function g1,2.

with

αi,j = α̃i,j − tolLi,j , βi,j = β̃i,j + tolUi,j ,

where tolLi,j and tolUi,j are tolerances, and [αi,j , βi,j ] is an estimate of the range of τ∞i,j .
Sharp estimates for the ranges are not necessary for DDUQ, but the estimated ranges
should be conservatively wide, so that they cover the support of the (as yet unknown)
corresponding target PDF (noting that the more conservative the range specified for
pτi(τi), the more “wasted” samples and the lower the effective sample size). Here, we
take relatively large tolLi,j and tolUi,j , which are both set to (β̃i,j − α̃i,j) (essentially
tripling the range obtained from the 10 snapshots).

Next, we generate Noff samples {(ξ(s)i , τ
(s)
i )}Noff

s=1 from the defined proposal PDF
for each local subdomain Di. We set Noff = Ni = Non to simplify the illustration. For

each sample (ξ
(s)
i , τ

(s)
i ), we solve local problems (4.1)–(4.3) to obtain the local solution

u(x, ξ
(s)
i , τ

(s)
i ) and its corresponding output yi(ξ

(s)
i , τ

(s)
i ). The last step of the offline

stage is to build coupling surrogates. That is, for all input samples, we compute the
values of coupling functions {hi,j(ξi, τi)}(i,j )∈Λ (see (7.7)–(7.8)) and then construct

the corresponding surrogates {h̃i,j(ξi, τi)}(i,j )∈Λ based on the methods introduced in
section 5.2.

The online algorithm is stated in Algorithm 2. The first online step is to generate
samples for the system input parameter ξ. In the numerical results reported in this
paper, we use the same samples of ξ in both offline and online (we also tested the
situation with different samples of ξ between offline and online, and no significantly
different results were found). We then perform the domain decomposition iteration
using the coupling surrogates {h̃i,j(ξi, τi)}(i,j )∈Λ instead of the coupling functions
{hi,j(ξi, τi)}(i,j )∈Λ, to obtain samples of target interface parameters. Once the target
samples are obtained, target PDFs can be estimated using density estimation tech-
niques. We use a MATLAB KDE toolbox [32] for density estimation. At the last step

of the online stage, the precomputed offline output samples {yi(ξ(s)i , τ
(s)
i )}Noff

s=1 are

reweighted by weights {w(s)
i }Ni

s=1 for each subdomain Di (see line 16 of Algorithm 2).

7.5. Results for two-parameter problem. First, we setNoff = 103 and assess
the domain decomposition iteration convergence property by computing the maximum
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of the error indicator, maxs=1:Noff
|τk+1

i (ξ(s)) − τki (ξ
(s))|, i = 1, 2, for both the cou-

pling functions {hi,j(ξi, τi)}(i,j )∈Λ and the surrogates {h̃i,j(ξi, τi)}(i,j )∈Λ. Figure 5
shows that the error indicators associated with the exact coupling functions and the
surrogate coupling functions match well and both reduce exponentially as iteration
step k increases.

Samples of the joint PDF of target interface parameters for each subdomain are
plotted in Figure 6. There is no visual difference between the samples generated
by the coupling functions and those generated by the surrogates. In Figure 7, the
target interface parameter samples (using surrogates) are again plotted and overlaid
with the corresponding samples from the proposal interface parameter PDFs. The
figure shows that the range of each proposal covers that of each target. It also shows
the inefficiency that the decomposition introduces—many of the proposal samples
(with corresponding local PDE solves) will have near-zero weights in the importance
sampling reweighting process. The effective sample sizes for the two cases in Figure 7
are N eff

1 = 323 and N eff
2 = 361, respectively.

Next, we focus on the ultimate goal of the analysis: quantification of the un-
certainty of the outputs of interest defined in (7.5)–(7.6). The PDF of each yi is
estimated by applying KDE to the weighted output samples generated by DDUQ.
For comparison, the Monte Carlo method at the system level (solving the global
problem (7.4)) with Nref = 106 samples is used to generate reference results. The
output samples associated with the reference solution are denoted by {yref1 (ξ(s))}Nref

s=1

and {yref2 (ξ(s))}Nref
s=1 . By applying KDE to {yrefi (ξ(s))}Nref

s=1 , we obtain the reference
PDFs of the outputs. Figure 8 shows that as Noff increases, the DDUQ estimates of
the PDFs approach the reference results.

To assess the accuracy of DDUQ outputs in more detail, we consider the er-
rors in the mean and variance estimates. The mean and variance of each output
estimated using a system-level Monte Carlo simulation with N samples, denoted by
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Fig. 5. Maximum of the error indicator on subdomain D1 (maxs=1:Noff
|τk+1

1 (ξ(s))−τk1 (ξ
(s))|)

and that on subdomain D2 (maxs=1:Noff
|τk+1

2 (ξ(s))− τk2 (ξ
(s))|), for the coupling functions (exact)

and the surrogates, with Noff = 103.
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Fig. 8. PDFs of the outputs of interest for the two-parameter test problem.



A122 QIFENG LIAO AND KAREN WILLCOX

{yMC
i (ξ(s))}Ns=1, are computed as

EN

(
yMC
i

)
:=

N∑
s=1

1

N
yMC
i

(
ξ(s)

)
,(7.9)

VN

(
yMC
i

)
:=

N∑
s=1

1

N

(
yMC
i

(
ξ(s)

)
−EN

(
yMC
i

))2

.(7.10)

Putting the reference samples {yrefi (ξ(s))}Nref
s=1 , i = 1, 2, into (7.9)–(7.10), the refer-

ence mean and variance values are obtained, which are denoted by ENref

(
yrefi

)
and

VNref

(
yrefi

)
, respectively.

The mean and variance of each output estimated using DDUQ are computed as

Ew,Noff
(yi) :=

∑Noff

s=1 w
(s)
i yi

(
ξ
(s)
i , τ

(s)
i

)
∑Noff

s=1 w
(s)
i

,

Vw,Noff
(yi) :=

∑Noff

s=1 w
(s)
i

(
yi

(
ξ
(s)
i , τ

(s)
i

)
−Ew,Noff

(yi)

)2

∑Noff

s=1 w
(s)
i

.

In order to assess the errors of DDUQ in estimating the mean and variance, the
following quantities are introduced:

εi :=

∣∣∣∣
(
Ew,Noff

(yi)− ENref

(
yrefi

))/
ENref

(
yrefi

)∣∣∣∣ ,
ηi :=

∣∣∣∣
(
Vw,Noff

(yi)−VNref

(
yrefi

))/
VNref

(
yrefi

)∣∣∣∣ .
Moreover, for N < Nref, errors of the system-level Monte Carlo simulation are mea-
sured by

ε̂i :=

∣∣∣∣
(
EN

(
yMC
i

)−ENref

(
yrefi

))/
ENref

(
yrefi

)∣∣∣∣ ,
η̂i :=

∣∣∣∣
(
VN

(
yMC
i

)−VNref

(
yrefi

))/
VNref

(
yrefi

)∣∣∣∣ .
Fixing the reference mean ENref

(yrefi ) and variance VNref
(yrefi ) for each output,

we repeat the DDUQ process 30 times for each Noff and compute the averages of εi
and ηi. These averages are denoted by E(εi) and E(ηi), respectively. In addition, we
repeat the system-level Monte Carlo simulation 30 times for N < Nref and denote the
average mean and variance errors by E(ε̂i) and E(η̂i). As discussed in section 6, for
a given sample size (N = Noff), the system-level Monte Carlo combined with parallel
domain decomposition requires more local PDE solves than DDUQ, since the system-
level Monte Carlo solves local PDEs at every domain decomposition iteration step.
In order to make a fair comparison, we consider two cases: (a) comparing DDUQ
and system-level Monte Carlo with the same number of samples (N = Noff); (b)
comparing them with the same number of local PDE solves (the system-level Monte
Carlo combined with parallel domain decomposition then has smaller sample sizes,
N < Noff). When counting the number of local PDE solves for DDUQ, we only
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consider the local solves in the offline step without counting the number of solves in
the pre-step, since the pre-step just has a small number of PDE solves (here just 10
snapshots were generated).

Figure 9 shows the average mean and variance errors for this test problem. First,
we focus on the comparison based on sample sizes, which are shown in Figure 9(a)
and Figure 9(c). It can be seen that all errors reduce as the sample size increases, and
although the errors of the system-level Monte Carlo are smaller than that of DDUQ,
they reduce at nearly the same rate of

√
Noff (Noff is the sample size) for this test

problem. We also see that the DDUQ estimates have errors roughly a factor of five
times that of the system-level Monte Carlo for a given sample size. For example, if we
want to achieve an accuracy in estimating the mean with error smaller than 10−4, 105

samples are required for DDUQ, while only 104 samples are required for the system-
level Monte Carlo. The larger errors obtained by the DDUQ approach are caused
largely by the sampling inefficiency introduced by the importance sampling step. This
inefficency can be seen in Figure 7, where the proposal samples lying in regions of low
target probability have small weights (essentially zero) in the online reweighting stage.
As a result, these samples play little role in estimating the output PDFs and output
statistics. For this test problem, the averages (from the 30 repeats) of the overall
effective sample sizes N eff (defined in section 6) associated with Noff = 103, 104, 105

are 313, 2761, 25, 411, respectively.
Next, we focus on the comparisons based on the number of local PDE solves,

which are shown in Figure 9(b) and Figure 9(d). For the same number of local PDE
solves, it can be seen that the errors in the mean estimates of DDUQ are smaller
than that of the system-level Monte Carlo. The errors in the variance estimates of
both methods are similar. From Figure 5, in order to reach the stopping criterion of
tol = 10−6, the parallel Dirichlet–Neumann method requires around 50 iterations for
this test problem, i.e., KDD ≈ 50. So, DDUQ has around 50 times more samples than
that of the system-level Monte Carlo in this situation. Again, it is important to note
that the position of the DDUQ error curves relative to the system-level Monte Carlo
results depends on the efficiency of the proposal distributions. The results in Figure 9
show that even with our conservative choice of proposal distribution, the computa-
tional penalty of the DDUQ approach for this problem is small to nonexistent.

7.6. Two-component system with four parameters. We again consider the
diffusion problem posed on the spatial domain shown in Figure 3, where we take the
same definitions of ∂DN and ∂DR as specified in section 7.2. We still decompose
ξ = [ξT1 , ξ

T
2 ]

T , and now each ξi is a two-dimensional vector, ξi = [ξi,1, ξi,2]
T , i = 1, 2.

The permeability coefficient, the Robin coefficient, and the source function are now
defined by

f(x, ξ ) = ξ1,1 when x ∈ [0, 1]× [0, 2],

f(x, ξ ) = 0 when x ∈ D \ [0, 1]× [0, 2],

a(x, ξ ) = ξ1,2 when x ∈ D1,

a(x, ξ ) = ξ2,1 when x ∈ D2,

b(x, ξ ) = ξ2,2 when x ∈ [5, 6]× {0},
b(x, ξ ) = 1 when x ∈ ∂DR \ [5, 6]× {0},

where the random variables {ξi,j}i,j=1:2 are specified to be independently distributed as
follows: ξ1,1 is a truncated Gaussian distribution with mean 100, standard deviation 1,
and range [80, 120]; ξ1,2 and ξ2,1 are both truncated Gaussian distributions with mean
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Fig. 9. Average DDUQ errors in output mean and variance estimates for output y1 (E(ε1)
and E(η1)) and output y2 (E(ε2) and E(η2)) are compared to the average errors in mean and
variance estimates computed using system-level Monte Carlo (E(ε̂1), E(η̂1), E(ε̂2), and E(η̂2)) for
the two-parameter test problem.

1, standard deviation 0.01, and range [0.9, 1.1]; ξ2,2 is a truncated Gaussian distribution
with mean 1, standard deviation 0.1, and range [0.5, 1.5]. The outputs of this problem
are also defined by (7.5)–(7.6).

In the pre-step, we take Ñ = 10 samples and collect only the first singular vector
for constructing the POD basis (see section 7.3 for details). In the offline step, the
linear response surface method is used to construct the coupling surrogates for this test
problem. The PDFs of the outputs of this problem are shown in Figure 10, where we
see that as Noff increases the PDFs generated by DDUQ approach the reference PDFs
(generated using the system-level Monte Carlo simulation with Nref = 106 samples).
Figure 11 shows the errors for this test problem. We see that trends in the errors in the
mean and variance estimates are similar to those observed for the two-parameter test
problem. Figure 11(a) and Figure 11(c) show that again system-level Monte Carlo
has smaller errors for the same sample size, while Figure 11(b) and Figure 11(d)
show that DDUQ competes favorably in computational cost when considering the
errors with respect to the number of local PDE solves. For this test problem, the
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Fig. 10. PDFs of the outputs of interest for the four-parameter test problem.

averages of the overall effective sample sizes N eff associated with Noff = 103, 104, 105

are 155, 1391, 13, 309, respectively.

7.7. Three-component system with seven parameters. The diffusion prob-
lem is now posed on the spatial domain shown in Figure 12, which consists of three
components. Robin boundaries ∂DR are marked in red in Figure 12, and a ho-
mogeneous Neumann boundary condition is applied on the other boundaries. The
Robin coefficient is set to b = 1 for x ∈ ∂DR, while the source function f = 1 for
x ∈ [5, 6]× [0, 2] and f = 0 for the other part of the spatial domain.

On each subdomain Di, i = 1, 2, 3, the permeability coefficient a(x, ξ) is assumed
to be a random field with mean function ai,0(x), constant standard deviation σ, and
covariance function C(x, x′),

C(x, x′) = σ2 exp

(
−|x1 − x′

1|
c

− |x2 − x′
2|

c

)
,(7.11)

where x = [x1, x2]
T , x′ = [x′

1, x
′
2]

T , and c is the correlation length. The random
fields are assumed to be independent between different subdomains. Here, we set
a1,0(x) = 1, a2,0(x) = 5, a3,0(x) = 1, σ = 0.5, and c = 20. Each random field can be
approximated by a truncated KL expansion [9, 19, 24],

a(x, ξ )|Di ≈ ai,0(x) +

Ni∑
k=1

√
λi,kai,k(x)ξi,k, i = 1, 2, 3,(7.12)

where {ai,k(x)}Ni

k=1 and {λi,k}Ni

k=1 are the eigenfunctions and eigenvalues of (7.11)
posed on each subdomain Di, Ni is the number of KL modes retained for subdomain
Di, and {ξi,k : i = 1, . . . ,M and k = 1, . . . ,Ni} are uncorrelated random variables.
In this paper, we set the random variables {ξi,k : i = 1, . . . ,M and k = 1, . . . ,Ni}
to be independent truncated Gaussian distributions with mean 0, standard deviation
0.5, and range [−1, 1].

The error of each truncated KL expansion depends on the amount of total variance
captured, δi := (

∑Ni

k=1 λi,k)/(|Di|σ2), where |Di| denotes the area of subdomain Di

[12, 48]. We choose N1 = 2, N2 = 3, and N3 = 2, so that each δi > 95%. This gives
a total of seven parameters in the input vector ξ.
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Fig. 11. Average DDUQ errors in output mean and variance estimates for output y1 (E(ε1)
and E(η1)) and output y2 (E(ε2) and E(η2)) are compared to the average errors in mean and
variance estimates computed using system-level Monte Carlo (E(ε̂1), E(η̂1), E(ε̂2), and E(η̂2)) for
the four-parameter test problem.
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Fig. 12. Three-component system.

The outputs of this problem are

y1(ξ) =

∫
Z1

u(x, ξ) dx2,(7.13)

y2(ξ) =

∫
Z2

u(x, ξ) dx1,(7.14)
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Fig. 13. PDFs of the outputs of interest for the seven-parameter test problem.

y3(ξ) =

∫
Z3

u(x, ξ) dx2,(7.15)

where x = [x1, x2]
T , Z1 := {x| x1 = 0, 0 ≤ x2 ≤ 2}, Z2 := {x| 5 ≤ x1 ≤ 6, x2 = 0},

and Z3 := {x| x1 = 11, 0 ≤ x2 ≤ 2}.
Ten samples are again used in the DDUQ pre-step, and the resulting POD bases

for the interface functions each contain only one basis vector. In this test problem,
we use a Kriging model to build surrogates of the coupling functions, constructed
with 103 samples through the DACE Kriging toolbox [41]. A reference solution is
again generated using the system-level Monte Carlo method with Nref = 106 samples.
The PDFs generated by DDUQ are shown in Figure 13. Again, the results of the
DDUQ and the system-level Monte Carlo match well when Noff approaches Nref .
Figure 14(a) and Figure 14(c) show that the errors in the mean and variance estimates
for this test problem reduce as the sample size increases, with system-level Monte
Carlo giving more accurate results for the same sample size, as expected. Figure 14(b)
and Figure 14(d) show that DDUQ and system-level Monte Carlo with the same
number of local PDE solves have similar errors, except the errors of the variance
estimate of y2. For this test problem, the averages of the overall effective sample sizes
N eff associated with Noff = 103, 104, 105 are 150, 1545, 12, 679, respectively.
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Fig. 14. Average DDUQ errors in output mean and variance estimates for each output yi
(E(εi) and E(ηi), i = 1, 2, 3) are compared to the average errors in mean and variance estimates
computed using system-level Monte Carlo (E(ε̂i) and E(η̂i), i = 1, 2, 3) for the seven-parameter test
problem.

7.8. Two-component system with a random interface. We extend our
approach to consider the random domain decomposition model [59, 60]. The diffusion
equation (7.1) is now posed on the one-dimensional domain shown in Figure 15, where
the location of the interface is described by a uniform random variable β with range
[−0.2, 0.2]. The permeability coefficient is set to a = ξ1 for x ∈ D1 and a = ξ2 for
x ∈ D2, where ξ1 and ξ2 are independent uniform distributions with ranges [0.8, 1.2]
and [8, 12], respectively. The source function is set to f = 1 throughout the spatial
domain and a homogeneous Dirichlet boundary condition u = 0 is applied on x = −1
and x = 1. The global solution u(x, ξ, β ) now depends on the uncertain variables
ξ = [ξ1, ξ2]

T and β. The outputs of interest are defined by

y1(ξ, β ) := u(−0.1, ξ, β ), y2(ξ, β ) := u(0.1, ξ, β ).(7.16)

For each subdomain Di (i = 1, 2), the local solution is denoted by u(x, ξi, β, τi),
where τi is the interface parameter defined in section 3. Since the range of β covers the
points x = −0.1 and x = 0.1 where the outputs are evaluated, each local solution has
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Fig. 15. Two different materials with a random interface β.

the possibility to provide both outputs, and we denote the outputs of local systems
by

y1,1 = u(−0.1, ξ1, β, τ1),(7.17)

y1,2 = u(0.1, ξ1, β, τ1),(7.18)

y2,1 = u(−0.1, ξ2, β, τ2),(7.19)

y2,2 = u(0.1, ξ2, β, τ2).(7.20)

The DDUQ offline input samples are denoted by {(ξ(s)i , β(s), τ
(s)
i )}Ni

s=1, i = 1, 2,
where samples of β can be different for different local systems. For each input sample,
the outputs are obtained based on the following conditions: for subdomain D1, the
output y1,1 is obtained when β ≥ −0.1, and y1,2 is obtained when β ≥ 0.1; for
subdomain D2, y2,1 is obtained when β ≤ −0.1, and y2,2 is obtained when β ≤ 0.1.
We again use the Kriging method with 103 samples to build surrogates of the coupling
functions (we note that the exact coupling functions can be written explicitly for this
test problem, but we use surrogates for the purpose of illustrating our methodology).

The target output PDF estimated through the reweighted samples (see section
4.1) of each output yi,j , i, j = 1, 2, is denoted by π̂yi,j (yi,j), while the estimated mean
and variance are denoted by E(yi,j) and V(yi,j).

As introduced in [59], the estimated PDF of yi, i = 1, 2, can be obtained through
the combination of contributions from both subdomains:

π̂y1(y1) = P (β ≥ −0.1)π̂y1,1(y1,1) + P (β ≤ −0.1)π̂y2,1(y2,1),(7.21)

π̂y2(y2) = P (β ≥ 0.1)π̂y1,2(y1,2) + P (β ≤ 0.1)π̂y2,2(y2,2),(7.22)

where P denotes the probability measure, and P (β ≥ −0.1) = P (β ≤ 0.1) = 3/4 and
P (β ≤ −0.1) = P (β ≥ 0.1) = 1/4 for this test problem. Similarly, the estimated
mean and variance of yi can be computed [59]:

E(y1) = P (β ≥ −0.1)E(y1,1) + P (β ≤ −0.1)E(y2,1),

V(y1) = P (β ≥ −0.1)V(y1,1) + P (β ≤ −0.1)V(y2,1)

+P (β ≥ −0.1)P (β ≤ −0.1) (E(y1,1)−E(y2,1))
2 ,

E(y2) = P (β ≥ 0.1)E(y1,2) + P (β ≤ 0.1)E(y2,2),

V(y2) = P (β ≥ 0.1)V(y1,2) + P (β ≤ 0.1)V(y2,2)

+P (β ≥ 0.1)P (β ≤ 0.1) (E(y1,2)−E(y2,2))
2 .

For comparison, a reference solution is obtained by system-level Monte Carlo
with 106 samples. Figure 16 shows that the PDFs generated by DDUQ approach the
reference PDFs as the sample size increases. Figure 17 shows the errors in the mean
and variance estimates for this random domain decomposition problem. Again, as
expected DDUQ has larger errors than those of the system-level Monte Carlo when
considering errors with respect to sample sizes. However, when considering errors
with respect to the number of local PDE solves, DDUQ is again competitive.
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Fig. 16. PDFs of the outputs of interest for the random domain decomposition test problem.
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Fig. 17. Average DDUQ errors in output mean and variance estimates for output y1 (E(ε1)
and E(η1)) and output y2 (E(ε2) and E(η2)) are compared to the average errors in mean and
variance estimates computed using system-level Monte Carlo (E(ε̂1), E(η̂1), E(ε̂2), and E(η̂2)) for
the random domain decomposition test problem.
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Finally, we note that it remains an open question for applying the DDUQ ap-
proach to random domain decomposition models where the KL expansion (7.12) is
used to approximate random permeability fields. The eigenfunctions and the eigenval-
ues in (7.12) depend on the locations of the interfaces. Therefore, in order to capture
95% of the total variance, the dimension of each local system input ξi may vary with
different interface locations [39]. Thus, it remains a challenging problem to specify
proposal input distributions in the DDUQ offline step for this situation.

8. Concluding remarks. This paper has presented a new decomposed ap-
proach to uncertainty quantification. A combination of domain decomposition and
importance sampling permits uncertainty analyses to be conducted entirely at the
local subsystem level in an offline phase. The specific method presented here uses
domain decomposition to divide the system into local subdomains; however, the gen-
eral strategy can be extended to other decomposition strategies, including those that
partition the system along disciplinary lines. Our method lays a foundation for un-
certainty quantification to become an integral part of complex system simulations.
It supports the vision of having all disciplinary/subsystem analyses accompanied by
a corresponding local uncertainty analysis. Then, just as local analysis results are
combined to form a system simulation, precomputed local uncertainty information
can be manipulated to achieve the overall system uncertainty assessment.

In theory our approach is scalable to complex systems with many subcompo-
nents and high-dimensional uncertain parameters. In practice, the method suffers
from two computational bottlenecks. The first is the density estimation step, needed
to construct the target probability densities, which are used to compute the impor-
tance sampling weights. We employ kernel density estimation and use its convergence
properties to establish convergence of our DDUQ method. However, this density es-
timation step limits us to problems with coupling parameters of dimension less than
about 10. Dimension reduction of the coupling parameters has proved an effective
strategy to overcome this limitation for the problems studied, although the bottleneck
remains. The second shortcoming of the DDUQ method is in the pre-step, which re-
quires a handful of full coupled system simulations to generate the POD basis for the
interface functions. Our current efforts are focused on alternative strategies to avoid
these simulations, so that the method becomes fully decomposed.
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