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Abstract The multifidelity Monte Carlo method provides a general framework for
combining cheap low-fidelity approximations of an expensive high-fidelity model to
accelerate the Monte Carlo estimation of statistics of the high-fidelity model output.
In this work, we investigate the properties of multifidelity Monte Carlo estimation in
the setting where a hierarchy of approximations can be constructed with known error
and cost bounds. Our main result is a convergence analysis of multifidelity Monte
Carlo estimation, for which we prove a bound on the costs of the multifidelity Monte
Carlo estimator under assumptions on the error and cost bounds of the low-fidelity
approximations. The assumptions that we make are typical in the setting of similar
Monte Carlo techniques. Numerical experiments illustrate the derived bounds.
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1 Introduction

Inputs to systems are oftenmodeled as randomvariables to account for the uncertainties
in the inputs due to inaccuracies and incomplete knowledge. Given the input random
variable and amodel of the system of interest, an important task is to estimate statistics
of the model output random variable.

Monte Carlo estimation is one popular approach to estimate statistics. Basic Monte
Carlo estimation generates samples of the input random variable, discretizes themodel
and then solves the discretized model—the high-fidelity model—up to the required
accuracy at these samples, and averages over the corresponding outputs to estimate
statistics of the model output random variable. This basic Monte Carlo estimation
often requires many samples, and consequently many approximations of the model
outputs, which can become too costly if the high-fidelity model solves are expensive.
We note that other techniques than Monte Carlo estimation are available to estimate
statistics of model outputs, see, e.g., [1,14,15,21,33,43,45,47].

Several variance reduction techniques have been presented to reduce the costs of
Monte Carlo simulation compared to basic Monte Carlo estimators, e.g., antithetic
variates [23,28,39] and importance sampling [27,36,39]. Our focus here is on the
control variate framework that exploits the correlation between the model output
random variable and an auxiliary random variable that is cheap to sample [30]. A
major class of control variate methods derives the auxiliary random variable from
cheap approximations of the outputs of the high-fidelity model. For example, in sit-
uations where the model is governed by (often elliptic) partial differential equations
(PDEs), coarse-grid approximations of the PDE—low-fidelity models—can provide
cheap approximations of the outputs obtained from a fine-grid high-fidelity discretiza-
tion of the PDE; however, other types of low-fidelity models are possible in the context
of PDEs, e.g., projection-based reduced models [3,20,37,40,41], data-fit interpola-
tion and regression models [12,13], machine-learning-based models such as support
vector machines [11,46], and other simplified models [29,32].

ThemultifidelityMonteCarlo (MFMC)method [38] uses a control variate approach
to combine auxiliary random variables stemming from low-fidelity models into an
estimator of the statistics of the high-fidelitymodel output. Key to theMFMCapproach
is the selection of how often each of the auxiliary random variables is sampled, and
therefore how often each of the low-fidelity models is solved. The MFMC approach
derives this selection from the correlation coefficients between the auxiliary random
variables and the high-fidelity model output random variable. The selection of the
MFMC approach is optimal in the sense that the variance of the MFMC estimator is
minimized for given maximal costs of the estimation. We refer to the discussions in
[31,38] for details on MFMC.

The work [38] discusses the properties ofMFMC estimation in a setting where only
mild assumptions on the high- and low-fidelity models are made. We consider here
the setting where we can make further assumptions on the errors and costs of outputs
obtained with a hierarchy of low- and high-fidelity models. Our contribution is to
show that for an MFMC estimator with mean-squared error (MSE) below a threshold
parameter ε > 0, the costs of the estimation can be bounded by ε−1 up to a constant
under certain conditions on the error and cost bounds of the models in the hierarchy.
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Convergence analysis of multifidelity Monte Carlo estimation 685

We discuss that the conditions we require in the MFMC context are similar to the
conditions exploited by themultilevelMonte Carlomethod [9, Theorem 1]. Our analy-
sis shows that MFMC estimation is as efficient in terms of error and costs as multilevel
Monte Carlo estimation under certain conditions that we discuss below in detail. Mul-
tilevel Monte Carlo uses a hierarchy of low-fidelity models—typically coarse-grid
approximations—to derive a hierarchy of auxiliary random variables, which are com-
bined in a judicious way to reduce the runtime of Monte Carlo simulation. Multilevel
Monte Carlo was introduced in [26] and extended and made popular by the work [18].
Since then, the properties of the multilevel Monte Carlo estimators have been studied
extensively in different settings, see, e.g., [2,6,8,9,42]. Multilevel Monte Carlo and its
variants have also been applied to density estimation [5], variance estimation [4], and
rare event simulation [44]. We also mention the continuation multilevel Monte Carlo
[10] and the extension multi-index Monte Carlo that allows different mesh widths in
the dimensions [22]. In [34,35], a fault-tolerant multilevel Monte Carlo is introduced
and analyzed, which is well suited for massively parallel computations. An integer
optimization problem is solved to determine the optimal number of model evaluations
depending on the rate of compute-node failures. The fault-tolerant approach thus takes
into account node failure by adapting the number of model evaluations accordingly.
The relationship betweenmultilevelMonte Carlo and sparse grid quadrature [7,16,17]
is discussed in [19,24,25].

The outline of the presentation is as follows. Section 2 introduces the problem
setup and basic,multilevel, andmultifidelityMonteCarlo estimators. Section 3 derives
the new convergence analysis of MFMC estimation. Numerical examples in Sect. 4
illustrate the derived bounds. Conclusions are drawn in Sect. 5.

2 Problem setup

This section introduces the problem setup and the various types of Monte Carlo esti-
mators required throughout the presentation. Section 2.1 introduces the notation and
Sect. 2.2 the basic Monte Carlo estimator. Multilevel Monte Carlo and the MFMC
estimation are summarized in Sects. 2.3 and 2.4, respectively.

2.1 Preliminaries

The set of positive real numbers is denoted as R+ = {x ∈ R : x > 0}. For two
positive quantities a and b, we define a � b to hold if a/b is bounded by a constant
whose value is independent of any parameters on which a and b depend on.

Let d ∈ N be the dimension and define the Lipschitz domain D ⊂ R
d . Let Z :

� → D be a random variable over a probability space (�,F ,P), where � denotes
the set of outcomes, F the σ -algebra of events, and P : F → [0, 1] a probability
measure. Let further Q : D → R be a function in a suitable function space and let
Q� : D → R be functions for � ∈ N that approximate Q in the sense of the following
assumption. Note that we assume that Q(Z) and Q�(Z) are integrable.
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686 B. Peherstorfer et al.

Assumption 1 There exists 1 < s ∈ R and rate α ∈ R+ such that

|E[Q(Z) − Q�(Z)]| ≤ κ1s
−α�, � ∈ N,

where κ1 ∈ R+ is a constant independent of �.

The parameter � ∈ N is the level of Q�. Let further w� ∈ R+ be the costs of
evaluating Q� for � ∈ N. The following assumption gives a bound on the costs with
respect to the level �.

Assumption 2 There exists a rate γ ∈ R+ with

w� ≤ κ3s
γ �,

where the constant s is given by Assumption 1 and κ3 ∈ R+ is a constant independent
of �.

Note that in Assumption 2 the same constant s as in Assumption 1 is used.
The variance Var[Q�(Z)] of the random variable Q�(Z) is denoted as

σ 2
� = Var[Q�(Z)], � ∈ N.

We make the assumption that there exists a positive lower and upper bound for the
variance σ 2

� with respect to level � ∈ N.

Assumption 3 There exist σlow ∈ R+ and σup ∈ R+ such that σlow ≤ σ� ≤ σup for
� ∈ N.

The Pearson product-moment correlation coefficient of the random variables Q�(Z)

and Ql(Z) is denoted as

ρ�,l = Cov[Q�(Z), Ql(Z)]
σ�σl

, �, l ∈ N, (1)

where Cov[Q�(Z), Ql(Z)] is the covariance of Q�(Z) and Ql(Z).
We consider the situation where the random variable Z represents an input random

variable and Q is a function that maps an input, i.e., a realization of Z , onto an output.
In our situation, evaluating Q entails solving a PDE (“model”), but the solutions to the
PDE are unavailable. We therefore revert to solving an approximate PDE (“discretized
model”), where the approximation (e.g., the mesh width) is controlled by the level �.
The functions Q� map the input onto the output obtained by solving the approximate
PDE on level �. Assumption 1 specifies in which sense Q� converges to Q with
� → ∞. Solving the approximate PDE on level � incurs costs w�. One task in this
context is to derive estimators of E[Q(Z)] using the functions Q�. We assess the
efficiency of an estimator ̂Q with its MSE

e(̂Q) = E

[

(

̂Q − E[Q(Z)])2
]

,
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Convergence analysis of multifidelity Monte Carlo estimation 687

and its costs c(̂Q), which are the sum of the evaluation costs w� of the functions Q�

used in the estimator ̂Q. An estimator ̂Q with MSE e(̂Q) � ε below a threshold
ε ∈ R+ is efficient, if the costs c(̂Q) � ε−1 are bounded by ε−1 up to a constant.
Note that ε bounds the MSE, in contrast to the root-mean-squared error (RMSE) as
in, e.g., [9].

2.2 Basic Monte Carlo estimation

Let � ∈ N and define the basic Monte Carlo estimator ̂QMC
�,m of E[Q�(Z)] as

̂QMC
�,m = 1

m

m
∑

i=1

Q�(Zi ),

with m ∈ N independent and identically distributed (i.i.d.) samples Z1, . . . , Zm of Z .
The MSE of the Monte Carlo estimator ̂QMC

�,m with respect to E[Q(Z)] is

e(̂QMC
�,m) = m−1 Var[Q�(Z)] + (E[Q(Z) − Q�(Z)])2 . (2)

The term m−1 Var[Q�(Z)] is the variance term and term (E[Q�(Z) − Q(Z)])2 is the
bias term. The costs of the estimator ̂QMC

�,m are

c(̂QMC
�,m) = mw�,

because Q� is evaluated at m samples, with one evaluation having costs w�.
Let now ε ∈ R+ be a threshold. One approach to obtain a basic Monte Carlo

estimator ̂QMC
�,m with e(̂QMC

�,m) � ε is to derive a maximal level L ∈ N and a number of
samplesm such that the bias and the variance term are bounded by ε/2 up to constants.
Consider first the choice of themaximal level L ∈ N.With Assumption 1, themaximal
level L is given by

L =
⌈

α−1 logs
(√

2κ1ε
−1/2

)⌉

, (3)

where κ1 is the constant in Assumption 1. Note that the maximal level L defines the
high-fidelity model QL in the terminology of the introduction, see Sect. 1.

To achieve that the variance term is bounded by ε/2 up to a constant, the number
of samples m is selected such that ε−1 � m. With Assumption 2, and assuming the
variance σ 2

� is approximately constant with respect to the level �, the costs of the basic
Monte Carlo estimator ̂QMC

L ,m are

c(̂QMC
L ,m) � ε−1−γ /(2α),

see [9, Section 2.1] for a proof. The costs of the basic Monte Carlo estimator scale
with the rates γ and α.
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688 B. Peherstorfer et al.

2.3 Multilevel Monte Carlo estimation

We follow [9] for the presentation of the multilevel Monte Carlo estimation. Consider
the threshold ε ∈ R+ and define the maximal level L ∈ N as in (3). Multilevel Monte
Carlo exploits the linearity of the expected value to write

E[QL(Z)] = E[Q1(Z)] +
L
∑

�=2

E[Q�(Z) − Q�−1(Z)] =
L
∑

�=1

E[
�(Z)],

where 
�(Z) = Q�(Z)− Q�−1(Z) for � > 1 and 
1(Z) = Q1(Z). The basic Monte
Carlo estimator of 
�(Z) with m� ∈ N samples Z1, . . . , Zm�

is

̂
MC
�,m�

= 1

m�

m�
∑

i=1

Q�(Zi ) − Q�−1(Zi ).

The multilevel Monte Carlo estimator ̂QML
L ,m is then given by

̂QML
L ,m =

L
∑

�=1

̂
MC
�,m�

, (4)

where the vector m = [m1, . . . ,mL ]T ∈ N
L is the vector of the number of samples at

each level. Note that each basic Monte Carlo estimator ̂
MC
�,m�

in (4) uses a separate,
independent set of samples. Note further that the functions Q1, . . . , QL−1 are low-
fidelity models in the terminology of the introduction, see Sect. 1.

Under the following two assumptions, and with a judicious choice of the number
of samples m, the multilevel Monte Carlo estimator is efficient, which means that the
estimator ̂QML

L ,m achieves an MSE of e(̂QML
L ,m) � ε with costs c(̂QML

L ,m) � ε−1. The
first assumption states that the variance of 
� decays with the level �.

Assumption 4 There exists a rate β ∈ R+ with

Var[Q�(Z) − Q�−1(Z)] ≤ κ2s
−β�, � ∈ N,

where s is the constant of Assumption 1 and κ2 ∈ R+ is a constant independent of �.

The following assumption sets the rate β of the decay of the variance Var[Q�(Z) −
Q�−1(Z)] in relation to the rate γ of the increase of the costs with level �.

Assumption 5 For the rates γ of Assumption 2 and β of Assumption 4, we have
β > γ .

Set the number of samples mML = [mML
1 , . . . ,mML

L ]T to

mML
� =

⌈

2ε−1κ2

(

1 − s−(β−γ )/2
)−1

s−(β+γ )�/2
⌉

, � = 1, . . . , L , (5)
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Convergence analysis of multifidelity Monte Carlo estimation 689

where κ2 is the constant in Assumption 4 and s is defined as in Assumption 1. Note
that the components of mML are rounded up. It is shown in [9] that if Assumptions 1–
5 hold, then the multilevel Monte Carlo estimator ̂QML

L ,mML with mML defined in (5)

achieves an MSE of e(̂QML
L ,mML) � ε with costs c(̂QML

L ,mML) � ε−1. Note that under
Assumptions 1–5 it is sufficient to select the number of samples with the rates β and γ

to achieve an efficient estimator. We refer to [9,18,26] for details on multilevel Monte
Carlo estimation.

2.4 Multifidelity Monte Carlo estimation

The MFMC estimator [38] uses functions Q1, . . . , QL up to the maximal level L to
derive an estimate of E[Q(Z)], similarly to the multilevel Monte Carlo estimator;
however, the functions Q1, . . . , QL are combined in a different way than in the mul-
tilevel Monte Carlo estimator, and the number of samples m are selected by directly
using correlation coefficients and costs instead of rates.

MFMC imposes on the number of samples m = [m1, . . . ,mL ]T that m1 ≥ m2 ≥
· · · ≥ mL > 0. Let

Z1, . . . , Zm1 ∈ D (6)

be m1 i.i.d. samples of the random variable Z . Let further

Q�(Z1), . . . , Q�(Zm�
), (7)

be the evaluations of Q� at the first m� samples Z1, . . . , Zm�
, for � = 1, . . . , L .

Consider now the basic Monte Carlo estimators

̂QMC
�,m�

= 1

m�

m�
∑

i=1

Q�(Zi ), � = 1, . . . , L , (8)

and

̂QMC
�,m�+1

= 1

m�+1

m�+1
∑

i=1

Q�(Zi ), � = 1, . . . , L − 1, (9)

which use the samples (6) and the evaluations (7). Note that the estimators in (9) use
the first m�+1 samples of the samples (6). Thus, the estimators ̂QMC

�,m�
and ̂QMC

�,m�+1
are

dependent for � = 1, . . . , L − 1. The MFMC estimator ̂QMF
L ,m is defined as

̂QMF
L ,m = ̂QMC

L ,mL
+

L−1
∑

�=1

a�

(

̂QMC
�,m�

− ̂QMC
�,m�+1

)

,

where a = [a1, . . . , aL−1]T ∈ R
L−1 are coefficients. The costs of the MFMC esti-

mator ̂QMF
L ,m are
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690 B. Peherstorfer et al.

c(̂QMF
L ,m) = wTm,

where w = [w1, . . . , wL ]T , see [38].
The MFMC method provides a framework to select the number of samples m and

the coefficients a such that the variance Var[̂QMF
L ,m] of the MFMC estimator ̂QMF

L ,m
with costs c(̂QMF

L ,m) = p is minimized for a given computational budget p ∈ R+. The
number of samples m and the coefficients a are derived under two assumptions on
the correlation coefficients of Q1(Z), . . . , QL(Z) and the costs w1, . . . , wL . The first
assumption specifies the ordering of the functions Q1(Z), . . . , QL(Z).

Assumption 6 The randomvariables Q1(Z), . . . , QL(Z)are ordered ascendingwith
respect to the absolute values of the correlation coefficients

|ρL ,1| < |ρL ,2| < · · · < |ρL ,L |.

The second assumption describes inequalities of the correlation coefficients and the
costs.

Assumption 7 The costsw1, . . . , wL and correlation coefficients ρL ,1, . . . , ρL ,L sat-
isfy

w�+1

w�

>
ρ2
L ,�+1 − ρ2

L ,�

ρ2
L ,� − ρ2

L ,�−1

for � = 1, . . . , L − 1, with ρL ,0 = 0.

Assumption 7 enforces that the cost savings associatedwith amodel justify its decrease
in accuracy (measured by correlation) relative to other models in the hierarchy. If a
particular model violates the condition in Assumption 7, the MFMCmethod omits the
model from the hierarchy. See [38] for more details.

Under Assumptions 6–7, the number of samples m and the coefficients a, which
minimize the variance of Var[̂QMF

L ,m] with costs c(̂QMF
L ,m) = p, are given as follows

[38]. The coefficients aMF = [aMF
1 , . . . , aMF

L−1]T are set to

aMF
� = ρL ,�σL

σ�

, � = 1, . . . , L − 1,

and the number of samples mMF = [mMF
1 , . . . ,mMF

L ]T is set to

mMF
� = mMF

L r�, � = 1, . . . , L − 1,

where

r� =
√

√

√

√

wL(ρ2
L ,� − ρ2

L ,�−1)

w�(1 − ρ2
L ,L−1)

, � = 1, . . . , L , (10)

and mMF
L = P

∑L
l=1 rlwl

,
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Convergence analysis of multifidelity Monte Carlo estimation 691

with ρL ,0 = 0. Note that the selection of mMF and aMF is independent of the rates
α, β, γ , which means the approach is applicable also in situations where rates capture
the behavior of the properties of the functions Q1, . . . , QL only poorly, see, e.g., [38]
for examples. Note further that the components of the number of samples mMF are
rounded up to integer numbers as in the multilevel Monte Carlo method, see (5) in
Sect. 2.3. We note that in [34] an integer optimization problem is solved to adapt the
number of model evaluations in multilevel Monte Carlo for an increased processor-
failure tolerance on massively-parallel compute platforms.

The MFMC estimator is unbiased with respect to E[QL(Z)], see [38, Lemma 3.1].
The variance of the MFMC estimator ̂QMF

L ,mMF is [38]

Var(̂QMF
L ,mMF) = σ 2

L(1 − ρ2
L ,L−1)

(

mMF
L

)2
wL

p.

The work [38] investigates the costs and the MSE of the MFMC estimator only in the
context of Assumptions 6 and 7, and does not give insights into the behavior of the
MFMC estimator if additionally Assumptions 1–5 are made.

3 New properties of the multifidelity Monte Carlo estimator

We now discuss the error and costs behavior of the MFMC estimator in a typical
setting of the multilevel Monte Carlo estimators where Assumption 4 on the rate of
the variance decay and Assumption 5 on the relative costs hold. Our main result is
Theorem 1 that states that the MFMC estimator is efficient under Assumptions 1–7,
which means that the MFMC estimator achieves an MSE e(̂QMF

L ,mMF) � ε with costs

c(̂QMF
L ,mMF) � ε−1, independent of the rates α and γ . We first state Theorem 1 and

then prove two lemmata in Sect. 3.1 and provide the proof of Theorem 1 in Sect. 3.2.
Corollary 1 discusses the convergence rates of MFMC if Assumption 5 is violated.

Theorem 1 With Assumptions 1–5, as well as Assumptions 6 and 7, set the maximum
level L as in (3) and set the budget p to

p = κ4ε
−1, (11)

with the constant

κ4 = 2
σ 2
up

σ 2
low

(

s
γ−β
2

1 − s
γ−β
2

)2

.

For the number of samples mMF and the coefficients aMF ∈ R
L−1 defined in Sect. 2.4,

the MSE e(̂QMF
L ,mMF) of the MFMC estimator with respect to the statistics E[Q(Z)] is

bounded as

e(̂QMF
L ,mMF) � ε ,
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692 B. Peherstorfer et al.

and the costs are bounded as c(̂QMF
L ,mMF) � ε−1.

Note that the MLMC theory developed in [9, Theorem 1] and [18, Theorem 3.1]
requires an additional assumption on the rateα because the rounding up of the numbers
of samples to an integer is explicitly taken into account, see also [4, Theorem 3.2].
We ignore the rounding here and therefore can avoid that assumption; however, we
emphasize that we expect that a similar assumption is necessary for MFMC as well if
the rounding of the numbers of samples is taken into account explicitly.

3.1 Preliminary lemmata

This section proves two lemmata that we use in the proof of Theorem 1 in Sect. 3.2.

Lemma 1 Let L ∈ N be the maximal level. From Assumption 4, it follows that

Var[QL(Z) − Q�−1(Z)] � s−β�, (12)

for � = 2, . . . , L − 1.

Proof Let κ2 be the constant in Assumption 4 so that we have

Var[Q�(Z) − Q�−1(Z)] ≤ κ2s
−β�,

for � ∈ N. We obtain

Var[Q�+1(Z) − Q�−1(Z)] ≤ Var[Q�+1(Z) − Q�(Z)] + Var[Q�(Z) − Q�−1(Z)]
+ 2|Cov[Q�+1(Z) − Q�(Z), Q�(Z) − Q�−1(Z)]|.

(13)

With Assumption 4 and the Cauchy–Schwarz inequality, it follows that

Var[Q�+1(Z) − Q�−1(Z)] ≤ κ2s
−β(�+1) + κ2s

−β�

+ 2
√

Var[Q�+1(Z) − Q�(Z)]Var[Q�(Z) − Q�−1(Z)],

and therefore we have

Var[Q�+1(Z) − Q�−1(Z)] ≤ κ2s
−β(�+1) + κ2s

−β� + 2κ2s
−β(2�+1)/2

≤ κ2s
−β�(s−β + 1 + 2s−β/2)

≤ κ2s
−β�(s−β/2 + 1 + 2s−β/2), (14)

where the last inequality holds because s > 1. Define now the sequence (b j ) with

b0 = 1, b j = s−β j/2 + b j−1(1 + 2s−β j/2), j ∈ N.
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Convergence analysis of multifidelity Monte Carlo estimation 693

From (14) and from the definition of the sequence (b j ), it follows with induction that

Var[Q�+ j (Z) − Q�−1(Z)] ≤ κ2s
−β(�+ j) + κ2b j−1s

−β� + 2κ2s
−β�(b j−1s

−β j )1/2

≤ κ2s
−β�(s−β j + b j−1 + 2(b j−1s

−β j )1/2)

≤ κ2s
−β�(s−β j + b j−1 + 2b j−1s

−β j/2)

≤ κ2s
−β�(s−β j/2 + b j−1(1 + 2s−β j/2))

≤ κ2s
−β�b j ,

because b j ≥ 1 (and therefore b1/2j ≤ b j ) and s > 1 for j ∈ N. To bound the sequence
(b j ), rewrite

b j =
j

∑

i=0

s−βi/2
j

∏

r=i+1

(1 + 2s−βr/2),

and observe that

j
∏

r=i+1

(1 + 2s−βr/2) ≤
∞
∏

r=0

(1 + 2s−βr/2).

The infinite product converges if and only if the series

∞
∑

r=0

2s−βr/2

converges, which is the case because s > 1 and therefore s−β/2 < 1. Denote

∞
∏

r=0

(1 + 2s−βr/2) = κ5,

with the constant κ5 ∈ R, and obtain the bound κ6 ∈ R

b j ≤ κ5

j
∑

i=0

s−βi/2 ≤ κ6, j ∈ N.

Using b j ≤ κ6 and (14) shows the lemma.

Lemma 2 From Assumptions 3, 4 and Lemma 1, it follows that

ρ2
L ,� − ρ2

L ,�−1 � 1

σ 2
low

s−β�.
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694 B. Peherstorfer et al.

Proof First, we ensure ρL ,� ≥ 0 for � ∈ N w.l.o.g. by redefining Q� to −Q� if nec-
essary, and subsequently using −Q� in the estimators (8) and (9). With the definition
of the correlation coefficient (1), we obtain

0 ≤ ρL ,� − ρL ,�−1 = ρL ,� − Cov[QL(Z), Q�−1(Z)]
σLσ�−1

= ρL ,� − 1

σLσ�−1
Cov[QL(Z), Q�−1(Z)] + 1

2

σ 2
L

σLσ�−1
− 1

2

σ 2
L

σLσ�−1

+ 1

2

σ 2
�−1

σLσ�−1
− 1

2

σ 2
�−1

σLσ�−1

= ρL ,� + 1

2σLσ�−1
Var[QL(Z) − Q�−1(Z)] − 1

2

(

σL

σ�−1
+ σ�−1

σL

)

,

(15)

where we used

Var[QL(Z) − Q�−1(Z)] = Var[QL(Z)] + Var[Q�−1(Z)]
−2Cov[QL(Z), Q�−1(Z)].

With x = σL/σ�−1, we can rewrite the last term in (15) as

1

2

(

σL

σ�−1
+ σ�−1

σL

)

= 1

2

(

x + 1

x

)

.

Because

1

2

(

x + 1

x

)

≥ 1

holds for x ∈ R+, and because 0 ≤ ρL ,� ≤ 1 per definition, we obtain the following
bound on ρL ,� − ρL ,�−1

0 ≤ ρL ,� − ρL ,�−1 = ρL ,� + 1

2σLσ�−1
Var[QL(Z) − Q�−1(Z)] − 1

2

(

σL

σ�−1
+ σ�−1

σL

)

≤ 1

2σLσ�−1
Var[QL(Z) − Q�−1(Z)]

� 1

σ 2
low

s−β�,

where we used Lemma 1 to bound Var[QL(Z)− Q�−1(Z)] and the lower bound σlow
of Assumption 3. Since ρL ,� + ρL ,�−1 ≤ 2, we obtain

ρ2
L ,� − ρ2

L ,�−1 = (ρL ,� − ρL ,�−1)(ρL ,� + ρL ,�−1) � 1

σ 2
low

s−β�.
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3.2 Proof of main theorem

With the Lemmata 1–2 discussed in Sect. 3.1, we now prove Theorem 1.
Proof of Theorem 1 The MSE of the MFMC estimator ̂QMF

L ,mMF is split into the biasing
and the variance term

e(̂QMF
L ,mMF) = Var[̂QMF

L ,mMF ] + (E[Q(Z) − QL(Z)])2 . (16)

We first consider the biasing term of the MSE. With the maximal level L defined as
in (3), we obtain with Assumption 1

(E[Q(Z) − QL(Z)])2 � ε

2
.

Consider now the variance term Var[̂QMF
L ,mMF ]. Assumption 3 means that σ� ≤ σup for

� = 1, . . . , L . We therefore have

Var[̂QMF
L ,mMF ] ≤

σ 2
up

(

1 − ρ2
L ,L−1

)

(

mMF
L

)2
wL

p =
σ 2
up

(

1 − ρ2
L ,L−1

)

pwL

(

L
∑

�=1

w�r�

)2

,

where we used mMF
L = p/(wT r) and r = [r1, . . . , rL ]T defined in (10) in Sect. 2.4.

Note that Assumptions 6–7 are required for mMF and aMF to be optimal in the sense
defined in Sect. 2.4. We further have with the definition of r in (10) in Sect. 2.4 that

σ 2
up

(

1 − ρ2
L ,L−1

)

pL

(

L
∑

�=1

w�r�

)2

= σ 2
up

p

(

L
∑

�=1

√

w�

(

ρ2
L ,� − ρ2

L ,�−1

)

)2

, (17)

see [38, Proof of Corollary 3.5] for the transformations. With Assumption 2 and
Lemma 2, we obtain

L
∑

�=1

√

w�

(

ρ2
L ,� − ρ2

L ,�−1

)

� 1

σlow

L
∑

�=1

√

sγ �s−β� � 1

σlow

L
∑

�=1

(

s
γ−β
2

)�

. (18)

Assumption 5 gives β > γ , and therefore sγ−β < 1 (because s > 1). Therefore, we
obtain with the geometric series that

L
∑

�=1

√

w�

(

ρ2
L ,� − ρ2

L ,�−1

)

� 1

σlow

s
γ−β
2

1 − s
γ−β
2

.

This means that we have

Var[̂QMF
L ,mMF ] �

σ 2
up

p

(

1

σlow

s
γ−β
2

1 − s
γ−β
2

)2

= 1

2ε−1 = ε

2
.
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This means that we bounded the variance and the biasing term by ε/2 and therefore
have that the MSE is bounded by ε. The choice of the budget p in (11) leads to
c(̂QMF

L ,mMF) � ε−1.
The following corollary considers the case where Assumption 5 is violated, i.e.,

where β ≤ γ .

Corollary 1 Consider the same setup as in Theorem 1, except that Assumption 5 is
violated and that ε < e−1. We obtain the following bounds on the costs

c(̂QMF
L ,mMF) �

{

ε−1 ln(ε)2, γ = β

ε−1− γ−β
2α , γ > β

, (19)

where ln denotes the logarithm with base e.

Proof Consider (18) in the proof of Theorem 1 and note that Eq .(18) holds even if
Assumption 5 is violated. Note that the following proof closely follows [9, Theorem 1]
and [18, Theorem 3.1].

We first consider the case γ > β and obtain

L
∑

�=0

(

s
γ−β
2

)� = 1 − s
γ−β
2 (L+1)

1 − s
γ−β
2

= s− γ−β
2 − s

γ−β
2 L

s− γ−β
2 − 1

= s− γ−β
2

s− γ−β
2 − 1

− s
γ−β
2 L

s− γ−β
2 − 1

.

Because γ > β and s > 1, we obtain for the first term

s− γ−β
2

s− γ−β
2 − 1

≤ 0,

and therefore

L
∑

�=0

(

s
γ−β
2

)� ≤ s
γ−β
2 L

1 − s− γ−β
2

.

With the definition of L in (3) and 	x
 ≤ x + 1, x ∈ R, we obtain

s
γ−β
2 L

1 − s− γ−β
2

≤ s
γ−β
2

1 − s− γ−β
2

s
γ−β
2α logs

(√
2κ1ε−1/2

)

=
s

γ−β
2

(√
2κ1

)
γ−β
2α

1 − s− γ−β
2

ε− γ−β
4α .

With the constant

κ7 = 2
σ 2
up

σ 2
low

⎛

⎜

⎜

⎝

s
γ−β
2

(√
2κ1

)
γ−β
2α

1 − s− γ−β
2

⎞

⎟

⎟

⎠

2
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and (17), we obtain

Var[̂QMF
L ,mMF ] � k7

2p

(

ε− γ−β
4α

)2
.

Thus, with p = κ7ε
−1− γ−β

2α follows the bound (19) for the case γ > β.
Consider now the case γ = β. We obtain

L
∑

�=0

(

s
γ−β
2

)� = L + 1 ≤ α−1 logs(
√
2κ1ε

−1/2) + 2

= α−1 logs(
√
2κ1) + α−1 ln(ε

−1)

2 ln(s)
+ 2.

With ε < e−1 follows 1 ≤ ln(ε−1), and therefore

L + 1 ≤ κ8 ln(ε
−1),

with

κ8 = α−1 logs(
√
2κ1) + α−1 1

2 ln(s)
+ 2.

Set

p = 2
σ 2
up

σ 2
low

κ2
8 ε−1 ln(ε)2,

where we used that ln(ε−1)2 = ln(ε)2, to obtain the bound (19) for the case γ = β.

4 Numerical experiment

This section demonstrates Theorem 1 numerically on an elliptic PDE with random
coefficients.

4.1 Problem setup

Let G = (0, 1)2 be a domain with boundary ∂G. Consider the linear elliptic PDE with
random coefficients

−∇ · (k(ω, x)∇u(ω, x)) = f (x), x ∈ G, (20)

u(ω, x) = 0, x ∈ ∂G, (21)

where u : � × Ḡ → R is the solution function defined on the set of outcomes � and
the closure Ḡ of G. The coefficient k is given as
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k(ω, x) =
d
∑

i=1

zi (ω) exp

(

−‖x − vi‖2
0.045

)

,

where d = 9, Z = [z1, . . . , zd ]T is a randomvectorwith components that are indepen-
dent and distributed uniformly in [10−4, 10−1], and the points in V = [v1, . . . , vd ] ∈
R
2×d are given by the matrix

V =
[

0.5 0.2 0.8 0.8 0.2 0 0.5 1 0.5
0.5 0.2 0.2 0.8 0.8 0.5 0 0.5 1

]

.

The domain D is D = [10−4, 10−1]9. The right-hand side is set to f (x) = 10. The
function Q : D → R is

Q(Z(ω)) =
(∫

G
u(ω, x)2dx

)1/2

.

We are interested in estimating E[Q(Z)].
We discretize the problem (20)–(21) with piecewise bilinear finite elements on a

rectangular grid in the domain G. The level � defines the mesh width 2−� of the grid
in one dimension. The solution of the discretized problem at level � is denoted as u�,
which gives rise to the functions

Q�(Z(ω)) =
(∫

G
u�(ω, x)2dx

)1/2

, � ∈ N.

Our reference estimate ̂QRef ≈ 10.54829 of E[Q(Z)] is a basic Monte Carlo
estimate obtained from 104 samples.

4.2 Numerical illustration of the assumptions

Dirichlet problems such as (20)–(21) are well studied in the multilevel Monte Carlo
literature. We therefore refer to the literature for theoretical considerations in the
context of multilevel Monte Carlo of problem (20)–(21) and its variations [8,9].

We estimate the rates of Assumptions 1–4 numerically from n = 104 sam-
ples Z1, . . . , Zn of the random variable Z and the corresponding evaluations of
Q3, . . . , Q8. Consider first Assumption 1. We use basic Monte Carlo estimators with
n = 104 samples to estimate |E[Q8(Z) − Q�(Z)]| for � = 3, . . . , 7 and then find
κ1 ∈ R+ and α ∈ R+ that best fit the estimates in the L2 norm. Since the domain G is
in a two-dimensional space, we set s = 22 = 4. Note that we estimate the constant κ1
and the rate α with respect to Q8 instead of Q. We follow [9] and ignore levels that
lead to too coarse grids. Note that a general discussion on which models to select for
MFMC estimation is given in [38, Section 3.5]. The behavior of |E[Q8(Z)− Q�(Z)]|
for � = 3, . . . , 7 is shown in Fig. 1a. The constant κ1 and the rate α are reported in
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Fig. 1 The plot in a shows that the rate of the decay of the expected absolute error is α ≈ 1, see Assump-
tion 1. The plot in b reports the rate γ ≈ 1 of the increase of the runtime of the evaluations Q� for
� = 3, . . . , 7, see Assumption 2. The plots in c and d report the behavior of the variance with respect to
Assumption 4 and Assumption 3, respectively. Note that β > γ as required by Assumption 5

Table 1 The table reports the
rates and constants of
Assumptions 1, 2, 4 that we
estimated for our problem
(20)–(21)

Rate Constant

Assumption 1 α ≈ 1.0579 κ1 ≈ 4.0528 × 101

Assumption 2 γ ≈ 1.0551 κ3 ≈ 2.3615 × 10−6

Assumption 4 β ≈ 1.9365 κ2 ≈ 1.3744 × 103

Table 1. We repeat the same procedure to obtain the rates and constants of Assump-
tions 2–4,which are visualized in Fig. 1 and reported inTable 1.Note that our estimated
rates satisfy β > γ , cf. Assumption 5.

Wemeasure the costs of evaluating the functions Q3, . . . , Q7 by averaging the run-
time over 104 runs. We use Matlab for the implementation and Matlab’s backslash
operator to solve systems of linear equations. The time measurements were performed
on nodes with Xeon E5-1620 CPUs and 32GB RAM. The variances σ 2

3 , . . . , σ 2
7

and the correlation coefficients ρ8,3, . . . , ρ8,7 are obtained from 104 samples, see
[38]. The costs w3, . . . , w7, the variances σ 2

3 , . . . , σ 2
7 , and the correlation coefficients

ρ8,3, . . . , ρ8,7 are reported in Table 2.

123



700 B. Peherstorfer et al.

Table 2 The table reports the costs w3, . . . , w7 of functions Q3, . . . , Q7, and the sample estimates
of the variances σ 2

3 , . . . , σ 2
7 and the correlation coefficients ρ8,3, . . . , ρ8,7 of the random variables

Q3(Z), . . . , Q7(Z) estimated from 104 samples

Costs [s] Variances Correlation coefficients

Level � = 3 2.94 × 10−4 9.41 9.990894578 × 10−1

Level � = 4 8.77 × 10−4 9.40 9.999374083 × 10−1

Level � = 5 3.18 × 10−3 9.34 9.999961196 × 10−1

Level � = 6 1.54 × 10−2 9.10 9.999997721 × 10−1

Level � = 7 6.78 × 10−2 8.27 9.999999908 × 10−1

(a)

(b)

Fig. 2 The plots report the share of the number of samples of each level in the total number of samples.
MFMC evaluates the coarsest model more often than multilevel Monte Carlo in this example

4.3 Numerical illustration of main theorem

For ε ∈ {100, 10−1, . . . , 10−5}, we derive multilevel Monte Carlo and MFMC esti-
mates of E[Q(Z)] following Sects. 2.3 and 2.4, respectively. The number of samples
for the multilevel Monte Carlo estimators are derived using the rates in Table 1. The
number of samples and the coefficients for the MFMC estimators are obtained using
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Fig. 3 The bar plot shows a detailed comparison of the share of the samples determined by multilevel
Monte Carlo (MLMC) and MFMC for ε = 10−5. Multilevel Monte Carlo distributes the number of
samples logarithmically among the levels, whereas MFMC determines a fine-grained distribution of the
number of samples. Thus, the bars have the same size on a logarithmic scale for multilevel Monte Carlo but
different sizes for MFMC. Note that the percent of the share of the total number of samples for each bar is
shown in the plot

the costs, variances, and correlation coefficients reported in Table 2. Figure 2 com-
pares the number of samples obtained with multilevel Monte Carlo and MFMC. The
absolute numbers of samples are reported in Table 3 for multilevel Monte Carlo and in
Table 4 for MFMC. Both methods lead to similar numbers of samples. MFMC assigns
more samples to level � = 3 than multilevel Monte Carlo. A detailed comparison is
shown in Fig. 3 for ε = 10−5, which illustrates that multilevel Monte Carlo distributes
the number of samples logarithmically among the levels depending on the rates β and
γ , see Sect. 2.4. MFMC directly uses the costs, variances, and correlation coefficients
and derives a more fine-grained distribution among the levels than multilevel Monte
Carlo. We refer to [38] for further investigations on the number of samples in the
context of MFMC.

We repeat the multilevel Monte Carlo and the MFMC estimation 100 times and
report in Fig. 4 the estimated MSE

ê(̂Q) = 1

100

100
∑

i=1

(

̂Qi − ̂QRef
)2

, (22)

where ̂Qi is either a multilevel Monte Carlo estimator or an MFMC estimator, and
where ̂QRef is the reference estimate, see Sect. 4.1. Figure 4 additionally shows error
bars with length

1

99

100
∑

i=1

(

ê(̂Q) −
(

̂Qi − ̂QRef
)2
)2

, (23)

which is an estimate of the variance of the error ê(̂Q) if ê(̂Q) is considered as a
random variable. The estimated MSE for the multilevel Monte Carlo and the MFMC
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Fig. 4 The results are in agreement with Theorem 1, which states that the costs of the MFMC estimator
with MSE e(̂QMF

L ,mMF ) � ε are bounded by c(̂QMF
L ,mMF ) � ε−1 under Assumptions 1–7. The behavior of

the MFMC estimator is similar to the behavior of the multilevel Monte Carlo estimator

estimators are reported in Fig. 4. Both estimators lead to similar estimated MSEs,
which is in agreement with Theorem 1. The runtime of the multilevel Monte Carlo
and the MFMC estimator is reported in Tables 3 and 4, respectively.

4.4 MFMC and coarse-grid (weakly-correlated) models

The random variables Q3(Z), . . . , Q7(Z) corresponding to levels � = 3, . . . , 7 are
highly correlated to the random variable Q8(Z), see Table 2.We now considerMFMC
with Q1(Z), Q2(Z), . . . , Q5(Z), where we include levels � = 1 and � = 2. The
estimated correlation coefficients, costs, and variances are reported in Table 5. The
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Table 5 The table reports the costs w1, . . . , w5 of functions Q1, . . . , Q5, and the sample estimates
of the variances σ 2

1 , . . . , σ 2
5 and the correlation coefficients ρ8,1, . . . , ρ8,5 of the random variables

Q1(Z), . . . , Q5(Z) estimated from 104 samples

Costs [s] Variances Correlation coefficients

level � = 1 1.12 × 10−4 3.23 7.761297293 × 10−1

level � = 2 1.67 × 10−4 6.09 9.884862151 × 10−1

level � = 3 2.94 × 10−4 9.41 9.990894578 × 10−1

level � = 4 8.77 × 10−4 9.40 9.999374083 × 10−1

level � = 5 3.18 × 10−3 9.34 9.999961196 × 10−1

Note that the costs, variances, and correlation coefficients for levels � = 3, . . . , 7 are reported in Table 2
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Fig. 5 The plots report the estimated MSE of multilevel Monte Carlo and the MFMC estimators that
combine Q1(Z), . . . , Q5(Z) corresponding to levels � = 1, . . . , 5. The random variables Q1(Z) and
Q2(Z) are onlyweakly correlated toQ8(Z). TheMFMCestimator shows a similar behavior as themultilevel
Monte Carlo estimator

randomvariable Q1(Z) corresponding to level � = 1 is significantlyweaker correlated
to Q8(Z) than the random variables Q2(Z), . . . , Q5(Z). As in Sect. 4.2, we measure
the rates of Assumptions 1, 2, 4, and obtain α ≈ 0.9255, β ≈ 1.6202 and γ ≈ 0.7160.
These rates are similar as the rates reported in Table 1. Note that β > γ .

We derive multilevel Monte Carlo and MFMC estimates of E[Q(Z)] for ε ∈
{101, 100, 10−1, 10−2} and report the estimated MSE (22) in Fig. 5. The error bars
show the variance (23). The results illustrate that MFMC achieves an estimated MSE
that is in agreement with Theorem 1 also in this case where the random variable Q1(Z)

corresponding to the coarsest discretization is only weakly correlated to Q8(Z). Mul-
tilevel Monte Carlo and MFMC show a similar behavior. We refer to [38, Section 3.4,
Section 4.3], where the performance of MFMC with weakly-correlated models is
further investigated analytically and numerically.

5 Conclusions

The MFMC method provides a general framework for combining multiple approx-
imations into an estimator of statistics of a random variable that is expensive (or
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impossible) to sample. We discussed MFMC in the special case where sampling the
random variable requires solving a PDE, and where we can sample only approxima-
tions that correspond to a hierarchy of discretizations of the PDE. In this setting, and
under standard assumptions on the discretizations of the PDE, the MFMC estimator
is efficient, which means that the costs of the MFMC estimator with MSE below a
threshold are bounded linearly in the threshold. Our numerical results illustrated the
theory.
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