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Abstract. We propose optimal dimensionality reduction techniques for the solution of goal–oriented
linear–Gaussian inverse problems, where the quantity of interest (QoI) is a function of the inversion param-
eters. These approximations are suitable for large-scale applications. In particular, we study the approx-
imation of the posterior covariance of the QoI as a low-rank negative update of its prior covariance, and
prove optimality of this update with respect to the natural geodesic distance on the manifold of symmetric
positive definite matrices. Assuming exact knowledge of the posterior mean of the QoI, the optimality re-
sults extend to optimality in distribution with respect to the Kullback-Leibler divergence and the Hellinger
distance between the associated distributions. We also propose the approximation of the posterior mean of
the QoI as a low-rank linear function of the data, and prove optimality of this approximation with respect
to a weighted Bayes risk. Both of these optimal approximations avoid the explicit computation of the full
posterior distribution of the parameters and instead focus on directions that are well informed by the data
and relevant to the QoI. These directions stem from a balance among all the components of the goal–oriented
inverse problem: prior information, forward model, measurement noise, and ultimate goals. We illustrate
the theory using a high-dimensional inverse problem in heat transfer.

Key words. inverse problems, goal–oriented, Bayesian inference, low-rank approximation, covariance
approximation, Riemannian metric, geodesic distance, posterior mean approximation, Bayes risk, optimality

AMS subject classifications. 15A29, 62F15, 68W25

1. Introduction. The Bayesian approach to inverse problems treats the unknown pa-
rameters as random variables, endowed with a prior distribution that encodes one’s knowl-
edge before data are collected. The distribution of the data conditioned on any value
of the parameters is specified through the likelihood model. Bayes’ rule then combines
prior and likelihood information to yield the posterior distribution, i.e., the distribution of
the parameters conditioned on the data. The posterior distribution defines the Bayesian
solution to the inverse problem. Characterizing this posterior distribution is of primary
interest in many engineering and science applications, ranging from computerized tomog-
raphy and optical imaging to geostatistical modeling. For instance, we might be interested
in the posterior marginals, the posterior probability of some functionals of the parameters,
or the probability of rare events under the posterior measure. In all these cases we may
need to draw samples from the posterior distribution. This sampling task tends to be ex-
tremely challenging in large-scale applications, especially when the parameters represent a
finite-dimensional approximation to a distributed stochastic process like a permeability or
a temperature field. In many applications, however, we are only interested in a particular
function of the parameters (e.g., the temperature field over a subregion of the entire domain
or the probability that the temperature exceeds a critical value). In this paper we exploit
such ultimate goals to reduce the cost of inversion.
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We begin by considering a finite-dimensional linear-Gaussian inverse problem of the
form

Y = GX + E, (1.1)

where X ∈ Rn represents the unknown parameters, Y ∈ Rd denotes the noisy observations,
G ∈ Rd×n is a deterministic linear forward operator, and E ∼ N (0,Γobs) is a zero-mean
additive Gaussian noise, statistically independent of X and with covariance matrix Γobs �
0. (We use boldface capital letters to denote random vectors.) We prescribe a Gaussian
prior distribution, N (0,Γpr), on X and assume, without loss of generality, zero prior mean
and Γpr � 0. One is usually concerned with the posterior distribution of the parameters,
X|Y ∼ N (µpos(Y ),Γpos),1 which has mean and covariance given by

µpos(Y ) = ΓposG
>Γ−1

obs Y , Γpos = (H + Γ−1
pr )−1, (1.2)

where H := G>Γ−1
obsG is the Hessian of the negative log-likelihood. In this paper, however,

we are not interested in the parameters X per se, but rather in a quantity of interest (QoI)
Z that is a function of the parameters,

Z = OX, (1.3)

for some linear and, without loss of generality, full row-rank operator O ∈ Rp×n with
p < n. Our interests are thus goal-oriented, as we wish to characterize only Z and not the
parameters X. Including such ultimate goals in the inference formulation is an important
modeling step in many applications of Bayesian inverse problems. This additional step
should reduce the computational complexity of inference by making the ultimate goals
explicit. Nevertheless, it is still not clear how to leverage ultimate goals to yield more
efficient Bayesian inference algorithms. The present paper will address this issue.

The full Bayesian solution to the goal-oriented inverse problem is the posterior distri-
bution of the QoI, i.e., Z|Y . It is easy to see that Z|Y is once again Gaussian with mean
and covariance matrix given by

µZ|Y (Y ) = O µpos(Y ), ΓZ|Y = O ΓposO>. (1.4)

The goal of this paper is to characterize statistically optimal, computationally efficient,
and structure–exploiting approximations of the statistics of Z|Y whenever the use of direct
formulas such as (1.4) is challenging or impractical (perhaps due to high computational
complexity or excessive storage requirements). We will approximate ΓZ|Y as a low-rank
negative update of the prior covariance of the QoI. Optimality will be defined with respect
to the natural geodesic distance on the manifold of symmetric and positive definite (SPD)
matrices [42]. The posterior mean µZ|Y (Y ) will be approximated as a low-rank function
of the data, where optimality is defined by the minimization of the Bayes risk for squared-
error loss weighted by Γ−1

Z|Y . The essence of these approximations is the restriction of the
inference process to directions in the parameter space that are informed by the data relative
to the prior and that are relevant to the QoI. These directions correspond to the leading
generalized eigenpairs of a suitable matrix pencil.

1X|Y refers to a random variable distributed according to the measure of X conditioned on Y .
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This paper extends, in several different ways, the work on goal-oriented inference origi-
nally presented in [63]. First of all, we introduce the notion of optimal approximation, rather
than exact computation, for both the posterior covariance matrix and the posterior mean
of the QoI. We propose computationally efficient algorithms to determine these optimal
approximations. The complexity of our algorithms scales with the intrinsic dimensionality
of the goal-oriented problem—which here reflects the dimension of the parameter subspace
that is simultaneously relevant to the QoI and informed by the data, as noted above. In
particular, the full posterior distribution of the parameters need not be computed at any
stage of the algorithms. This is a key contrast with [63]. Moreover, we make it possible to
handle high-dimensional QoIs such as those arising from the discretization of a distributed
stochastic process. This class of problems is frequently encountered in applications (see,
e.g., Section 4).

The ideas and algorithms of this paper are primarily developed in the linear-Gaussian
case. On one hand, their application to goal-oriented linear inverse problems is of standalone
interest [63]. On the other hand, in the context of high-dimensional nonlinear Bayesian in-
verse problems, the Gaussian approximation is often the only tractable approximation of
the posterior distribution [19, 54]. For example, in [54], a linearization of the parameter-to-
observable map and a linearization of the parameter-to-prediction map are performed for a
high-dimensional ice sheet model, reducing the nonlinear inverse problem to a goal-oriented
linear Gaussian inverse problem. Moreover, the rigorous analysis of dimensionality reduc-
tion ideas in linear inverse problems often leads to computationally efficient dimensionality
reduction strategies for nonlinear inverse problems2 (see, e.g., [97, 31] or [63, 64]).

The remainder of the paper is organized as follows. In Section 2 we introduce statis-
tically optimal approximations of the posterior statistics of the QoI. Section 3 contains a
simple proof-of-concept example, while in Section 4 we illustrate the theory using a more
realistic inverse problem in heat transfer. Section 5 offers some concluding remarks. Ap-
pendix A reviews an important class of metrics between distributions (Rao’s distance), while
Appendix B contains the proofs of the main results of this paper.

2. Theory. In this section we introduce optimal approximations of the posterior mean
µZ|Y (Y ) and posterior covariance ΓZ|Y of the QoI. Section 2.1 reviews a class of metrics
between probability distributions and introduces natural loss functions for the approxima-
tion of µZ|Y (Y ) and ΓZ|Y . Section 2.2 then focuses on the approximation of ΓZ|Y , while
the posterior mean approximation is addressed in Section 2.3. The main results of this
section are Theorem 2.3 and Theorem 2.9.

2.1. Optimality criteria: metrics between distributions. To measure the quality
of the approximation of a posterior distribution we employ a metric first introduced by Rao
in [84] based on the Fisher information. Rao’s approach to comparing distributions is
rooted in differential geometry. The idea is to turn a parametric family of distributions into
a Riemannian manifold endowed with a metric based on the geodesic distance [85]. The
Riemannian structure is induced by a quadratic form defined by the Fisher information
matrix. (See Appendix A for the explicit construction of Rao’s distance.) For a Gaussian
family of distributions this metric can be written explicitly at least in two particular cases

2Of course, a comprehensive theory for nonlinear inverse problems will likely require tools beyond those
explored in this paper.
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[6, 93]. If the family consists of Gaussian distributions with the same covariance matrix, Γ,
then the metric reduces to the Mahalanobis distance between the means [67, 85]:

dR(ν1, ν2) = ‖µ1 − µ2‖Γ−1 , ν1 = N (µ1,Γ), ν2 = N (µ2,Γ), (2.1)

where ‖z‖2Γ−1 := z>Γ−1z. We will use this metric to define optimal approximations of the
posterior mean in Section 2.3. Notice that this metric emphasizes differences in the mean
along eigendirections of Γ corresponding to low variance.

If, on the other hand, the family consists of Gaussian distributions with the same mean,
µ, then the metric reduces to:

dR(ν1, ν2) =
√

1
2
∑
i

ln2(σi), ν1 = N (µ,Γ1), ν2 = N (µ,Γ2), (2.2)

where (σi) are the generalized eigenvalues of the pencil (Γ1,Γ2) [55]. That is, (σi) are the
roots of the characteristic polynomial det(Γ1−σ Γ2) and satisfy the equation Γ1 vi = Γ2 vi σi
for a collection of generalized eigenvectors (vi) [45]. Since this family of distributions can
be identified with the cone of SPD matrices, Sym+, (2.2) can also be used as a Riemannian
metric on Sym+ [42, 14]. We will use this Riemannian metric to define optimal approxi-
mations of the posterior covariance matrix in Section 2.2. This metric on Sym+ is also the
unique geodesic distance that satisfies the following two important invariance properties:

dR(A,B) = dR(A−1, B−1) and dR(A,B) = dR(MAM>,MBM>), (2.3)

for any nonsingular matrix M and matrices A,B ∈ Sym+ (e.g., [16]) making it an ideal
candidate to compare covariance matrices. Moreover, it has been used successfully in a
variety of applications (e.g., [94, 81, 72, 12, 52, 40]). Notice that the flat distance induced
by the Frobenius norm does not satisfy the invariance properties (2.3), and has often been
shown to be inadequate for comparing covariance matrices [40, 5, 96].

In the most general case of manifolds of Gaussian families parameterized by both the
mean and covariance, there seems to be no explicit form for the geodesic distance.

2.2. Approximation of the posterior covariance of the QoI. We first focus on
approximating ΓZ|Y . The cost of computing ΓZ|Y according to (1.4) is dominated by the
solution of p linear systems with coefficient matrix Γ−1

pos in order to determine ΓposO>.
In large-scale inverse problems only the action of the precision matrix Γ−1

pos on a vector is
usually available; it is not reasonable to expect to have direct factorizations of Γ−1

pos, such
as Cholesky decomposition. Thus, the solution of linear systems with coefficient matrix
Γ−1

pos is often necessarily iterative (e.g., via Krylov subspace methods for SPD matrices
[50, 45]). Moreover, the storage requirements for ΓZ|Y scale as O(p2). If the dimension
of the QoI is inherently low, e.g., p = O(1), then the use of direct formulas like (1.4) can
be remarkably efficient. For instance, if we are only interested in the average of X, i.e.,
Z := 1

n

∑
iXi, then the QoI is only one-dimensional and computing the posterior covariance

of the QoI amounts to solving essentially a single linear system. As the dimension of the
QoI increases, however, direct formulas like (1.4) become increasingly impractical due to
high computational complexity and storage requirements. In many cases of interest, the
dimension of the QoI can be arbitrarily large. Consider the following simple example. If X
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represents a finite-dimensional approximation of a spatially distributed stochastic process
(e.g., an unknown temperature field), then the QoI could be the restriction of this process
to a domain of interest. In this case, the QoI is also a finite-dimensional approximation of
a spatially distributed process, and its dimension can be arbitrarily high depending on the
chosen level of discretization. (We will revisit this example in Section 4.) There is a clear
need for new inference algorithms to efficiently tackle such problems.

2.2.1. Background on optimal low-rank approximations. Even though direct
formulas like (1.4) can be intractable when the QoI is high-dimensional, essential features
of large-scale Bayesian inverse problems bring additional structure to the Bayesian update:
The prior distribution might encode some kind of smoothness or correlation among the
inversion parameters. Observations are typically limited in number, indirect, corrupted by
noise, and related to the inversion parameters by the action of a forward operator that
filters out some information [97, 31]. As a result, data are usually informative, relative
to the prior, only about a low-dimensional subspace of the parameter space. That is, the
important differences between the prior and posterior distributions are confined to a low-
dimensional subspace. This source of low-dimensional structure is key to the development
of efficient Bayesian inversion algorithms [39, 31] and also plays a crucial role when dealing
with goal-oriented problems.

In [97] we studied the optimal approximation of the posterior covariance of the param-
eters as a negative definite low-rank update of the prior covariance matrix. Optimality
was defined with respect to the Riemannian metric given in Section 2.1, i.e., the geodesic
distance on the manifold of SPD matrices [42]. Note that optimality of the covariance
approximation in this metric also leads to optimality of the approximation with respect
to familiar measures of similarity between probability distributions, such as the Kullback–
Leibler divergence and the Hellinger distance [97, 79]. In particular, we focused on the
approximation class

Mr = {Γpr −KK> � 0 : rank(K) ≤ r} (2.4)

of positive definite matrices that can be written as a low-rank update of the prior covari-
ance. This class takes advantage of the low-dimensional structure of the prior-to-posterior
update.3 The following theorem from [97] characterizes the optimal approximation of Γpos,
and is the launching point for this section. Henceforth whenever we write that (α, v) are
eigenpairs of (A,B) we mean that (α, v) are the generalized eigenvalue–eigenvector pairs of
the matrix pencil (A,B).

Theorem 2.1 (Optimal posterior covariance approximation). Let (δ2
i , wi) be the eigen-

pairs of (H,Γ−1
pr ) with the ordering δ2

i ≥ δ2
i+1, where H := G>Γ−1

obsG as in (1.2). Then a
minimizer Γ̂pos of the Riemannian metric dR between Γpos and an element of Mr is given
by

Γ̂pos = Γpr −KK>, KK> =
r∑
i=1

δ2
i

1 + δ2
i

wiw
>
i , (2.5)

3Many approximate inference algorithms, especially in the context of Kalman filtering, exploit the class
(2.4) to deliver an approximation of Γpos (e.g., [7, 8, 95]). These algorithms, however, are suboptimal in the
sense defined by the forthcoming Theorem 2.1. See [97] for further details and numerical examples.
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where the distance between Γpos and the optimal approximation is

d2
R(Γpos, Γ̂pos) = 1

2
∑
i>r

ln2(1 + δ2
i ). (2.6)

Theorem 2.1 shows that the optimal way to update the prior covariance matrix to
obtain an approximation of Γpos is along the eigenvectors of (H,Γ−1

pr ).4 These eigenvectors
are the directions most informed by the data, and are obtained from a balance between
the forward model, the measurement noise, and prior information. This update is typically
low-rank for precisely the reasons discussed above: the data are informative relative to the
prior only about a low-dimensional subspace of the parameter space [20, 91]. Notice that
(2.5) is not only an optimal and structure-exploiting approximation of Γpos, but it is also
computationally efficient, as the dominant eigenpairs of (H,Γ−1

pr ) can easily be computed
using matrix-free algorithms like a Lanczos iteration (including its block version) [60, 76, 32,
19, 57] or a randomized SVD [48, 62]. This approximation of Γpos, originally introduced in
[39] for computational convenience and justified by intuitive arguments, has been employed
successfully in many large-scale applications of Bayesian inversion [19, 69, 21, 31, 30, 82].
It is the starting point for our analysis of goal-oriented inverse problems.

2.2.2. A naïve approximation. In this section we introduce an intuitive but subop-
timal approximation of ΓZ|Y , which will provide insight and motivation for the structure of
the forthcoming optimal approximation. The reader interested exclusively in the optimal
approximation may jump directly to Section 2.2.3.

The combination of Theorem 2.1 with the direct formulas (1.4) suggests a first approx-
imation strategy for the posterior covariance of the QoI: just replace Γpos in (1.4) with the
optimal approximation described by Theorem 2.1,

ΓZ|Y ≈ Γ̂Z|Y := O Γ̂posO> = O ΓprO> −OKK>O>, (2.7)

where the low-rank update KK> is given by (2.5). Approximation (2.7) is already a major
computational improvement over the direct formulas (1.4). There is no need to solve p
linear systems; rather, we only need to compute the leading eigenpairs of (H,Γ−1

pr ) with a
matrix-free algorithm. The rank of the update depends on the dimension of the parameter
subspace that is most informed by the data.

Despite these favorable computational properties, the approximation (2.7) is still not
satisfactory as it does not explicitly account for the goal-oriented feature of the problem:
Γ̂pos in (2.7) is the optimal approximation of the posterior covariance of the parameters, but
is by no means tailored to the QoI. The pencil (H,Γ−1

pr ) used to compute the approximation
Γ̂pos does not include the goal-oriented operator O. In other words, the directions (wi)
defining the optimal prior-to-posterior update in (2.5), though strongly data-informed, need
not be relevant to the QoI. For instance, some of the (wi) could lie in the nullspace of the
goal-oriented operator. Computing these eigenvectors would be an unnecessary waste of

4The properties of the pencil (H,Γ−1
pr ) have been studied extensively in the literature on classical regu-

larization techniques for linear inverse problems (e.g., [49, 37, 22, 99, 77]). These papers, however, do not
adopt a statistical approach to inversion and thus have not considered the optimal approximation of the
posterior covariance matrix.
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computational resources. Of course, as the rank of the optimal prior-to-posterior update
increases, the corresponding approximation Γ̂Z|Y will continue to improve until eventually
ΓZ|Y = Γ̂Z|Y . In the worst case scenario, however, Γ̂Z|Y will be a good approximation
of ΓZ|Y only as we start computing eigenpairs of (H,Γ−1

pr ) associated with the smallest
nonzero generalized eigenvalues. This is clearly unacceptable as the overall complexity of
the approximation algorithm would not depend on the nature of the goal-oriented operator.
Therefore, the approximation (2.7) cannot satisfy any reasonable optimality statement in
the spirit of Theorem 2.1 and calls for a proper modification.

2.2.3. An optimal approximation. The form of Γ̂Z|Y in (2.7) shows that the poste-
rior covariance of the QoI can be written as a low-rank update of the prior covariance. (Re-
call that the prior distribution of the QoI is Gaussian, Z ∼ N (0,ΓZ) with ΓZ = O ΓprO>.)
This is once again consistent with our intuition about the Bayesian update: the data will
only inform certain aspects of the QoI. Thus a structure-exploiting approximation class
for ΓZ|Y is given by the set of positive definite matrices that can be written as rank–r
negative-definite updates of ΓZ :

MZ
r = {ΓZ −KK> � 0 : rank(K) ≤ r}. (2.8)

Before introducing one of the main results of this paper, we observe that Y and Z are
related by a linear model similar to (1.4). The following lemma clarifies this relationship.
(See Appendix B for a proof.)

Lemma 2.2. A linear Gaussian model consistent with (1.4) is given by:

Y = GO†Z + ∆, (2.9)

where O† := ΓprO>Γ−1
Z , Z ∼ N (0,ΓZ) and ∆ ∼ N (0,Γ∆) are independent, and Γ∆ :=

Γobs +G(Γpr − ΓprO> Γ−1
Z OΓpr)G>.

The results of [97, Theorem 2.3] can be extended to the goal-oriented case by applying
them to the reduced linear model in (2.9). The following theorem defines the optimal
approximation of ΓZ|Y and is one of the main results of this paper. See Appendix B for a
proof.

Theorem 2.3 (Optimal approximation of the posterior covariance of the QoI). Let
(λi, qi) be the eigenpairs of:

(GΓprO> Γ−1
Z O ΓprG

> , ΓY ) (2.10)

with the ordering λi ≥ λi+1 > 0 and normalization q>i GΓprO> Γ−1
Z O ΓprG

> qi = 1, where
ΓY := Γobs + GΓprG

> is the covariance matrix of the marginal distribution of Y . Then,
a minimizer Γ̃Z|Y of the Riemannian metric dR between ΓZ|Y and an element of MZ

r is
given by:

Γ̃Z|Y = ΓZ −KK>, KK> =
r∑
i=1

λi q̂iq̂
>
i , q̂i := O ΓprG

>qi, (2.11)

where the corresponding minimum distance is:

d2
R(ΓZ|Y , Γ̃Z|Y ) = 1

2
∑
i>r

ln2( 1− λi ). (2.12)
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The optimal approximation in Theorem 2.3 yields the best approximation for any given
rank of the prior-to-posterior update and, most importantly, never requires the full posterior
covariance of the parameters. (This should be contrasted with [63].) The directions (qi) that
define the optimal update are the leading eigenvectors of (GΓprO> Γ−1

Z O ΓprG
>,ΓY ) and

stem from a careful balance of all the ingredients of the goal-oriented inverse problem: the
forward model, measurement noise, prior information, and ultimate goals. Incorporating
ultimate goals reduces the intrinsic dimensionality of the inverse problem: for any fixed
approximation error, the rank of the optimal update (2.11) can only be less than or equal
to that of the suboptimal approximation introduced in (2.7).

2.2.4. Computational remarks. If square roots of Γpr and Γobs are available, such
that Γpr = Spr S

>
pr and Γobs = Sobs S

>
obs, then we can rewrite the pencil (2.10) in a more

concise form as follows.
Corollary 2.4. Let Ĝ := S−1

obsGSpr, and let Π be an orthogonal projector onto the
range of S>prO>. Then the eigenvalues of

( ĜΠ Ĝ> , I + Ĝ Ĝ> ) (2.13)

are the same as those of (2.10), and the eigenvectors of (2.13) can be mapped to the eigen-
vectors of (2.10) with the transformation w 7→ S−>obsw.

The proof of the corollary is straightforward once we note that Π can be written as Π =
S>prO> (OSprS

>
prO>)−1O Spr = S>prO> Γ−1

Z O Spr. Moreover, the action of the projector
Π on a vector v can be computed efficiently since Π(v) := S>prO>xls, where xls is the
least squares solution of the overdetermined linear system S>prO> xls = v. There is a
variety of techniques for the solution of large-scale matrix-free least squares problems (e.g.,
[78, 41, 23, 50, 71]).

We now focus our computational remarks on the analysis of the pencil in (2.13), which
is well suited for practical implementations of the approximation. To simplify notation, let
us rewrite (2.13) as (A,B), where A := ĜΠ Ĝ> and B := I + Ĝ Ĝ>.

Finding the leading generalized eigenpairs of (2.13) requires the solution of a Hermitian
generalized eigenvalue problem [10]. Unfortunately, it is not easy to reduce (2.13) to a
standard eigenvalue problem,5 as doing so would require the action of a square root of B or of
B−1. Nevertheless, there are a plethora of matrix-free algorithms for large-scale generalized
eigenvalue problems: generalized Lanczos iteration [10, Section 5.5], randomized SVD–type
methods [88], manifold optimization algorithms [1, 2, 11], the trace minimization algorithm
[89, 58], and the inverse–free preconditioned Krylov subspace method [46], to name a few.
These algorithms require the iterative solution of linear systems associated with B, in some
cases to low accuracy [89, 46]. Applying B to a vector requires the evaluation of the
forward model, which may or may not be expensive (e.g., consider PDE based models [39]
versus image deblurring problems [56]). In practice, for a fixed dimension of the desired
eigenspace, algorithms for characterizing the eigenpairs of (A,B) lead to more expensive
computations than those for the pencil (H,Γ−1

pr ) used in the naïve approximation of Section
2.2.2. However, the key point is that the optimal approximation of Theorem 2.3 requires
the characterization of lower dimensional eigenspaces for a given accuracy.

5In contrast, this is often possible in the non-goal-oriented case when dealing with the pencil (H,Γ−1
pr ),

as the action of a square root of Γ−1
pr , or of its inverse, is available in many cases of interest (e.g., [66]).
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Moreover, if we solve the generalized eigenvalue problem using a block Lanczos iteration
or a randomized method, then we can also exploit block Krylov methods to solve the
associated linear systems—comprised of B and multiple right-hand sides—simultaneously
[75, 87]. In particular, the convergence of Krylov methods for solving linear systems of the
form Bx = b, such as the conjugate gradient algorithm, depends not only on the spectrum
of B but also on the right-hand side b [65, 9]. This dependence is especially important when
the right-hand side has some structure and is not entirely random: in our case, b lies in the
range of the possibly low-rank operator A. For instance, if b is mostly contained in a low-
dimensional invariant subspace of B (whether associated with small or large eigenvalues),
then the Krylov solver will likely converge to an accurate solution in few steps. Conversely,
it should be noted that if the range of the operator Π in (2.13)—essentially the subspace of
the parameter space that is relevant to the QoI—has non-negligible components along every
data-informed parameter direction (corresponding to the leading eigenspace of (H,Γ−1

pr )),
then it would be difficult to obtain an accurate approximation of ΓZ|Y without exploring
the full data-informed subspace.

Even though the naïve approximation is suboptimal, it may be interesting from a prac-
tical standpoint to assess its performance, since it is cheaper to compute for a given ap-
proximation rank. The following lemma provides useful guidelines in this direction. See
Appendix B for a proof of this result.

Lemma 2.5 (Relationship between approximations). Let Γ̃Z|Y , Γ̂Z|Y ∈MZ
r be, respec-

tively, the optimal and suboptimal approximations of ΓZ|Y introduced in (2.11) and (2.7).
Moreover, let Γ̂pos ∈Mr be the optimal approximation of Γpos defined in (2.5). Then

dR( ΓZ|Y , Γ̃Z|Y ) ≤ dR( ΓZ|Y , Γ̂Z|Y ) ≤ dR( Γpos , Γ̂pos ). (2.14)

Lemma 2.5 has several interesting consequences. First of all, notice that it is possible to
bound the accuracy of the naïve approximation, Γ̂Z|Y = O Γ̂posO>, using dR( Γpos , Γ̂pos ).
The latter distance can easily be bounded as a function of the generalized eigenvalues of
(H,Γ−1

pr ), as shown in (2.6). These are precisely the eigenvalues computed by the naïve
approximation. Thus, if the eigenvalues of (H,Γ−1

pr ) decay sharply or, equivalently, if the
distance dR( Γpos , Γ̂pos ) can be made small with only a low-dimensional (small r) prior-to-
posterior update, then Lemma 2.5 says that the naïve approximation, albeit suboptimal,
can yield a remarkably efficient approximation of ΓZ|Y —with strong accuracy guarantees
in terms of dR( Γpos , Γ̂pos). Intuitively, if Γ̂Z|Y already accounts for most of the data-
informed directions in the parameter space, then there is no major loss of accuracy in
neglecting further directions of the prior-to-posterior update, even if these directions are
relevant to the QoI. In this situation, these additional directions would provide very limited
information relative to the prior and can be safely neglected.

On the other hand, if the eigenvalues of (H,Γ−1
pr ) do not decay as quickly, then the

bound provided in (2.14) becomes useless. This is not to say that the naïve approximation
will necessarily perform poorly. (It is possible that the QoI depends only on a few of the
leading data-informed directions, such that the naïve approximation performs well even
for a low rank prior-to-posterior update.) But we cannot quantify the accuracy of the
naïve approximation unless we directly compute dR(ΓZ|Y , Γ̂Z|Y ), which in turn requires the
solution of an expensive generalized eigenvalue problem for each rank of the update. This is
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not feasible in practice. In such situations, we should resort to the optimal approximation
introduced in Theorem 2.3, which offers a useful error bound as well as a concrete possibility
for both computational and storage savings.

2.2.5. Properties of the optimal covariance approximation. An important con-
sequence of the optimal approximation of ΓZ|Y with respect to the metric dR is optimality
in distribution whenever the posterior mean of the QoI is known. It follows from [97,
Lemma 2.2] that the minimizer of the Hellinger distance (or the Kullback–Leibler diver-
gence) between the Gaussian posterior measure of the QoI, νZ|Y := N (µZ|Y (Y ),ΓZ|Y ),
and the approximation N (µZ|Y (Y ),Γ) for a matrix Γ ∈ MZ

r , is given by the optimal ap-
proximation (2.11) defined in Theorem 2.3. In particular, let ν̃Z|Y := N (µZ|Y (Y ), Γ̃Z|Y )
be the measure that optimally approximates νZ|Y , where Γ̃Z|Y is defined in (2.11). Then
it is easy to show that the Hellinger distance between νZ|Y and the optimal approximation
ν̃Z|Y is given by:

dHell(νZ|Y , ν̃Z|Y ) =

√√√√1−
∏
i>r

21/2 (1− λi)1/4

(2− λi)1/2 (2.15)

where (λi) are the generalized eigenvalues defined in Theorem 2.3 (e.g., [97, Appendix A]
or [79]).

The Hellinger distance can be used to bound the error of expectations of functions of
interest with respect to approximate measures [33]. That is, suppose that we are interested
in the posterior expectation EνZ|Y [g] of some measurable function g : Rp → R, with certain
bounded moments with respect to the prior measure νZ := N (0,ΓZ), and suppose further
that we can only evaluate integrals with respect to the approximate measure ν̃Z|Y . Then
the error resulting from computing Eν̃Z|Y [g], as opposed to EνZ|Y [g], for a fixed realization
of the data Y , can be bounded in terms of the Hellinger distance between the two Gaussian
measures using the following lemma, which follows easily from [33, Lemma 7.14]. (See
Appendix B for a proof.)

Lemma 2.6 (Convergence in expectation). Let g : Rp → R be a measurable function
with β > 2 bounded moments with respect to the prior measure, i.e., EνZ [ |g|β ] <∞. Then:∣∣∣EνZ|Y [g]− Eν̃Z|Y [g]

∣∣∣ ≤ C(Y , g) dHell(νZ|Y , ν̃Z|Y ), (2.16)

where C(Y , g) := 2
√

2 |ΓZ |1/4
|ΓZ|Y |1/4

exp
(

1
2(β−2) ‖µZ|Y (Y )‖2Γ−1

Z

)
EνZ [ |g|β ]1/β and where |A| de-

notes the determinant of the matrix A.
Notice that the constant C(Y , g) in (2.16) is independent of the approximating measure

ν̃Z|Y . Convergence of the approximation in Hellinger distance thus implies convergence of
the expectation Eν̃Z|Y [g] to EνZ|Y [g].

It is interesting to note that the optimal approximation of the posterior covariance
matrix of the QoI in Theorem 2.3 is always associated with a corresponding approximation
of the posterior covariance of the parameters, Γpos. The following result clarifies the nature
of this approximation. It is proved in Appendix B.

Lemma 2.7 (Goal-oriented approximation of Γpos). Let Γ̃Z|Y be the minimizer of the
metric dR between ΓZ|Y and an element of MZ

r as given by (2.11). Then Γ̃Z|Y can be
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written as

Γ̃Z|Y = O Γ̂∗posO>, Γ̂∗pos = Γpr −
r∑
i=1

λi q̃i q̃
>
i , q̃i := Spr ΠS>prG

>qi, (2.17)

where the vectors (qi) are defined in Theorem 2.3, Spr is a square root of the prior covariance
matrix such that Γpr = Spr S

>
pr, Π is the orthogonal projector onto the range of S>prO>, while

Γ̂∗pos satisfies

Γ̂∗pos ∈ arg min
Γ
dR( ΓZ|Y , O ΓO>) (2.18)

s.t. Γ ∈Mr := {Γ = Γpr −KK> � 0, rank(K) ≤ r}.

The matrix Γ̂∗pos is an optimal goal-oriented approximation of Γpos. This notion of optimal-
ity is quite different from that in Theorem 2.1. The prior-to-posterior update directions,
(q̃i) in (2.17), have the intuitive interpretation of directions, in the parameter space, that
are most informed by the data, relative to the prior, and that are relevant to the QoI. In
particular, it is easy to see that the (q̃i) are orthogonal to the nullspace of the goal-oriented
operator with respect to the inner product induced by the prior precision, i.e.,

h>Γ−1
pr q̃i = (O h)>Γ−1

Z OΓprG
>qi = 0, ∀h ∈ Null(O). (2.19)

Note that even if Γ̃Z|Y = O Γ̂∗posO> is a good approximation of ΓZ|Y , Γ̂∗pos need not be a
good approximation of Γpos.

Now we introduce a particularly simple factorization of the optimal approximation Γ̃Z|Y
from Theorem 2.3, as Γ̃Z|Y = S̃Z|Y S̃>Z|Y for some matrix S̃Z|Y . We can think of S̃Z|Y
as a square root of Γ̃Z|Y , even though S̃Z|Y need not be a square matrix. Obtaining the
action of a square root of Γ̃Z|Y on a vector is an essential task if our goal is to sample the
distribution N (µZ|Y (Y ), Γ̃Z|Y ) in truly high-dimensional problems. The key requirement
is that S̃Z|Y be easy to compute once we have the optimal approximation Γ̃Z|Y . We have
deferred the discussion of this topic until now in order to exploit the results of Lemma 2.7
to obtain an explicit characterization of S̃Z|Y . The proof of the following lemma can be
found in Appendix B.

Lemma 2.8. Let (λi, qi), Spr, and Π be defined as in Lemma 2.7. Then, a non-
symmetric square root, S̃Z|Y , of Γ̃Z|Y , such that Γ̃Z|Y = S̃Z|Y S̃>Z|Y , is given by

S̃Z|Y = O Spr

(
r∑
i=1

(
√

1− λi − 1) q̄i q̄>i + I

)
, q̄i := ΠS>prG

>qi, (2.20)

where I is the identity matrix.
The virtue of this result is that it does not require an invertible square root of ΓZ =

O ΓprO> as one would expect from [97, Remark 2]. Note that it is easy to apply S̃Z|Y to
a vector, which allows efficient sampling from N (µZ|Y (Y ), Γ̃Z|Y ). An interesting feature
of S̃Z|Y ∈ Rp×n is that it is a nonsquare matrix with p < n. This is certainly not an
issue as long as S̃Z|Y S̃>Z|Y = Γ̃Z|Y . Notice also that (2.20) contains a square root of



12 SPANTINI ET AL.

the prior covariance matrix. The action of this matrix is usually available in large-scale
applications (e.g., [100, 35, 66, 98, 101]). However, if the action of a square root of Γpr
is truly unavailable, then one can still sample from N (µZ|Y (Y ), Γ̃Z|Y ) by resorting to the
action of the matrix Γ̃Z|Y alone (e.g., [24, 43, 80, 92]). It is straightforward to apply Γ̃Z|Y
to a vector (see (2.11)).

2.3. Approximation of the posterior mean of the QoI. We conclude this theory
section by introducing an optimal approximation of the posterior mean of the QoI. The cost
of computing

µZ|Y (Y ) := O µpos(Y ) = O ΓposG
>Γ−1

obs Y (2.21)

for a single realization of the data is usually dominated by the cost of solving a single linear
system associated with Γ−1

pos to determine µpos(Y ). This task can be efficiently tackled with
state-of-the-art matrix-free iterative solvers for symmetric linear systems (e.g., [10, 50, 3])
even for million-dimensional parameter spaces [19]. If, however, one is interested in the fast
computation of µZ|Y (Y ) for multiple realizations of the data (e.g., in the context of online
inference), then the situation is quite different [26, 44, 68, 53, 29, 25]. Solving a linear
system to compute µZ|Y (Y ) each time a new measurement is available might be infeasible
in practical applications. If the dimension of the QoI is small, say p = O(1), then there is an
easy solution to this problem. One can just precompute the matrix M := O ΓposG

>Γ−1
obs in

an offline stage and then compute the posterior mean of the QoI as µZ|Y (Y ) = M Y each
time a new realization of the data becomes available. Yet the computational efficiency of
this procedure breaks down as the dimension of the QoI increases—for instance, if the QoI
is a finite-dimensional approximation of some underlying function. In this case, the matrix
M would be large and dense, and storing it could be quite inefficient. Moreover, performing
a dense matrix-vector product to compute µZ|Y (Y ) = M Y might become more expensive
than solving, a single linear system associated with Γ−1

pos.
Our goal is thus to characterize computationally efficient and statistically optimal ap-

proximations of µZ|Y (Y ). In particular, we seek an approximation of µZ|Y (Y ) as a low-rank
linear function of the data, i.e., µZ|Y (Y ) ≈ µ̃Z|Y (Y ) := AY for some low-rank matrix A.
With such an A, computing µ̃Z|Y (Y ) for each new realization of the data would be com-
putationally efficient. We define optimality of the approximation with respect to the Bayes
risk for squared-error loss weighted by the posterior precision matrix of the QoI, i.e.,

B(A) := E
[
‖AY −Z‖2Γ−1

Z|Y

]
, (2.22)

where B(A) denotes the Bayes risk associated with the matrix A, and where the expectation
is taken over the joint distribution of Z and Y . (The minimizer of the Bayes risk for squared
error loss over all linear functions of the data is precisely the posterior mean of the QoI.)
Minimizing the Bayes risk (2.22) is equivalent to minimizing

E
[
‖µZ|Y (Y )− µ̃Z|Y (Y )‖2Γ−1

Z|Y

]
(2.23)

over all approximations of the posterior mean of the form µ̃Z|Y (Y ) = AY for some low-
rank matrix A. The Mahalanobis distance in (2.23) is precisely a Riemannian metric of the
form described in Section 2.1 and thus it is a natural way to assess the quality of a posterior
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mean approximation. In particular, the weighted norm in (2.23) penalizes errors in the
approximation of µZ|Y (Y ) more strongly in directions of lower posterior variance. As a
result, the approximation of µZ|Y (Y ) is more likely to fall within the bulk of the posterior
density of the QoI. Notice that (2.23) is an average of the squared Riemannian distance
between µZ|Y (Y ) and its approximation µ̃Z|Y (Y ) over the distribution of the data Y .

The following theorem characterizes the optimal approximation of µZ|Y (Y ). See Ap-
pendix B for a proof.

Theorem 2.9 (Optimal approximation of µZ|Y (Y )). Let (λi, qi, q̂i) be defined as in
Theorem 2.3 and consider the minimization of the following Bayes risk over the set of
low-rank matrices:

min
A

E
[
‖AY −Z‖2Γ−1

Z|Y

]
, s.t. rank(A) ≤ r . (2.24)

Then a minimizer of (2.24) is given by:

A∗ =
r∑
i=1

λi q̂i q
>
i , (2.25)

with minimum Bayes risk:

B(A∗) = E
[
‖A∗ Y −Z ‖2Γ−1

Z|Y

]
=
∑
i>r

λi
1− λi

+ n, (2.26)

where n is the dimension of the parameter space.
Note that (2.25) can be computed “for free” from the optimal approximation of ΓZ|Y

introduced in Theorem 2.3. Also, the optimal approximations of both the posterior mean
and the posterior covariance of the QoI become quite accurate as soon as we start including
generalized eigenvalues λ � 1 in the corresponding approximations (see minimum loss
(2.12) and Bayes risk (2.26)).

3. Proof-of-concept example. Before investigating the numerical performance of
our goal-oriented approximations, we illustrate the theory with a simple proof-of-concept
example. We consider an identity forward model G = I, a diagonal observational noise
precision Γ−1

obs = diag(h1, . . . , hn), and a diagonal prior covariance Γpr = diag(µ1, . . . , µn),
with hi = n − i and µi = i for i = 1, . . . , n. We may think of this problem as denoising
a signal X [97]. Figure 3.1 shows the normalized eigenvalues of Γ−1

obs and Γpr in blue and
red, respectively, for the case n = 30. The eigenvectors of both matrices correspond to the
canonical vectors in Rn, i.e., e1, . . . , en. In this case, the data are most informative—in
absolute terms—along directions ei with i � n, since the observational noise precision hi
is a decreasing function of i. On the other hand, the prior variance is large along ei when
i � 1, since µi is an increasing function of i. Thus the prior is more constraining where
the data are more informative. The eigenpairs (δ2

i , wi) of the pencil (H,Γ−1
pr ), defined in

Theorem 2.1, are given by δ2
i = hi ·µi = (n− i) · i and wi ∝ ei for i = 1, . . . , n. (These δ2

i are
not sorted in decreasing order; for simplicity, we retain the same index i as in the problem
definition.) From the relative magnitudes of (δ2

i )—illustrated by the green parabola in
Figure 3.1—we can identify the parameter directions that are most informed by the data
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relative to the prior: they correspond to ei with i around n/2 (the middle of the spectrum).
These directions define the optimal prior-to-posterior update of Theorem 2.1. Modes ei
with i � n/2 are strongly informed by the data in an absolute sense, but not relative to
the prior; thus their overall importance is limited. In the same way, modes ei with i� n/2
are unimportant to the update since the posterior variance along these directions is roughly
equal to the prior variance (δ2

i � 1), even though both variances are relatively large [97].
Now let the goal-oriented operatorO : Rn → Rp be defined as follows: Ox = (x1, . . . , xp)

for x = (x1, . . . , xn) and p = n/2. Simple algebra shows that the goal-oriented eigenpairs
(λi, qi) of Theorem 2.3 are given by qi ∝ ei for i = 1, . . . , n, and λi = 1/(1 + 1/(hiµi)) for
i ≤ p and λi = 0 for i > p. So that the eigenvalues δ2

i and λi are comparable in terms of
their associated covariance approximation errors—see (2.6) and (2.12)—we plot a nonlinear
function of each λi in Figure 3.1, namely λ̂i = f(λi) for f(x) = 1/(1−x). (Since f is strictly
increasing on [0, 1), the relative importance of the (λ̂i) is the same as that of the original
(λi).) The introduction of a goal-oriented operator reveals directions that can be strongly
informed by the data, relative to the prior, but that are irrelevant to the QoI. These modes
correspond to (ei) for i > p, and can be safely neglected when computing the Bayesian
update relevant to the QoI.

Of course, in the general case of non-diagonal operators (G,Γobs,Γpr), the directions
(wi) and (qi) need not coincide. The following numerical example will illustrate this general
situation.
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Fig. 3.1. Normalized eigenvalues defined in the proof-of-concept example of Section 3: in blue we show
(hi/hmax), in red (µi/µmax), in green (δ2

i /δ
2
max), and in magenta (λ̂i/λ̂max), for i = 1, . . . , n and n = 30.

For any finite collection of eigenvalues (σi), we define σmax to be the maximum value over that collection.
Since for i ≤ p and p = 15, we have λ̂i = δ2

i in this example, we shifted the magenta curve slightly upwards
to distinguish it from the green one.

4. Numerical examples. Now we numerically illustrate the performance of our ap-
proximations using a goal-oriented inverse problem in heat transfer. In particular, we study
the cooling of a CPU by means of a heat sink. Our goal is to infer the (spatially inho-
mogeneous) temperature of the CPU from noisy pointwise observations of temperature on
the heat sink. Figure 4.1 shows the problem setup: the three different layers of material
correspond, respectively, to the CPU (D1), a thin silicone layer that connects the CPU to
the heat sink (D2), and an aluminum fin (D3). We denote by D the union of these domains.
Each Di represents a two-dimensional cross section of material of constant width W along
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the horizontal direction and a height Li. We assume that no heat transfer happens along
the third dimension; this is a common engineering approximation [13]. Each material has a
constant density ρi, a constant specific heat ci and a constant thermal conductivity ki. The
corresponding thermal diffusivities αi = ki/ρici are shown in the table at the right of Figure
4.1. The time-dependent temperature field in each domain is Θ(i) : Di × T → R, where
T = (0, tend], for i = 1, 2, 3. Jointly, these temperature fields are simply Θ : D × T → R.

4.1. Forward, observational and prior models. The time evolution of each tem-
perature field Θ(i) is described by a linear time-dependent PDE of the form

ρi ci ∂t Θ(i) = ∇ · (ki∇Θ(i)), i = 1, . . . , 3, (4.1)

where ∂t denotes partial differentiation with respect to time. We assume no volumetric
heat production and use Fourier’s law for the heat flux [47]. Equations 4.1 should be com-
plemented with appropriate boundary and initial conditions to define a well-posed forward
problem. We use the independent variables s1 and s2 to denote, respectively, the horizontal
and vertical directions and let s = (s1, s2). The point s = (0, 0) corresponds to the lower
left corner of D. At the lower boundary of D1 we impose a space- and time-dependent
heat flux: k1 ∂~n Θ(1) = q(s, t) for s ∈ D1,bottom, where ~n refers to the outward pointing
normal and q is a given nonconstant scalar function in s. At the interface between domains
Di and Di+1 we assume heat transfer by conduction with no thermal contact resistance:
ki ∂~n Θ(i) = ki+1 ∂~n Θ(i+1) and Θ(i) = Θ(i+1) for s ∈ interface(Di,Di+1) and i = 1, 2. At the
top, left, and right boundaries of D3, we assume heat transfer by convection with a fluid at
constant temperature Θ∞: −k3 ∂~n Θ(3) = hc(Θ(3) − Θ∞) for s ∈ D3,top ∪ D3,left ∪ D3,right,
where hc is a convective heat transfer coefficient. Finally, we impose adiabatic condi-
tions (no heat exchange) on the left and right boundaries of D1 and D2: ∂~n Θ(i) = 0 for
s ∈ Di,left ∪ Di,right and i = 1, 2. The initial conditions are not specified here as they are
the objective of the forthcoming inverse problem.

We consider a finite element spatial approximation of the weak form of (4.1) by means
of linear elements on simplices [83]. We denote by Θh(t) ∈ Rn the collection of temperature
values at the finite element nodes on D at time t ∈ T . The function Θh satisfies a system
of ODEs of the form M ∂tΘh(t) + AΘh(t) = f(t), with t ∈ T , for a suitable mass matrix
M , stiffness matrix A, known time-dependent forcing term f and initial conditions Θ0h :=
Θh(t = 0).

The initial conditions Θ0h are unknown and must be estimated from local measurements
of the temperature field Θ at different locations in space and time. The locations of the
sensors s1, . . . , sN are shown as black dots in Figure 4.1. Observations are collected every
∆t time units for t ∈ T . The first observation happens at time t = ∆t and we assume
that there are M observation times in total. We denote measurements at time ti = i∆t
as Ŷi =

[
Θ(s1, i∆t), . . . ,Θ(sN , i∆t)

]
. We concatenate the observations into a vector Ŷ =

(Ŷ1, . . . , ŶM ) ∈ Rd. The actual observations are corrupted with additive Gaussian noise:
Y = Ŷ + E, where E ∼ N (0, σ2

obs I) and I is the identity matrix. Notice that Ŷ is an
affine function of Θ0h. This relationship can be made linear by a suitable redefinition of
the data vector. Thus, we are lead to a linear Gaussian inverse problem in standard form,
Y = GΘ0h + E, where G defines the forward operator, Θ0h 7→ Ŷ , that can be evaluated
implicitly by solving a heat equation with no forcing term and initial conditions Θ0h for a
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time interval necessary to collect the corresponding observations Ŷ .
We define a zero-mean Gaussian prior distribution6 on Θ0h by modeling Θ0h as a

discretized solution of a stochastic PDE of the form

γ
(
κ2I −4

)
Θ(s) =W(s), s ∈ D, (4.2)

where W is a white noise process, κ is a positive scalar parameter, 4 is the Laplacian
operator and I is the identity operator. In particular, we exploit the explicit link be-
tween Gaussian Markov random fields with the Matérn covariance function and solutions
to stochastic PDEs as outlined in [66]. In this case, the action of a square root of the prior
covariance matrix on a vector is readily available as the solution of an elliptic PDE on D,
and thus it is scalable to very large inverse problems [66].

In this example we use hc = 23.8 W/m2 K for the convective heat transfer coefficient
between the aluminum fin and the external fluid (air), which has constant temperature
Θ∞ = 283 K. The width of the domain D in Figure 4.1 is H = 2 × 10−2 m. The heat
flux q(s, t) is time-independent and nonnegative and can be written as the superposition
of two square impulse functions with zero background: one centered at 6 × 10−3 m with
width 8×10−3 m and intensity 0.6 W/m2; and the other centered at 15×10−3 m with width
4 × 10−3 m and intensity 0.3 W/m2. Observations are collected every ∆t = 5 × 10−4 s for
a total of M = 100 measurements. We use σobs = 1/2 as the standard deviation of the
observational noise. The prior parameters in (4.2) are given by γ = 1×104 and κ =

√
8/ρpr

with ρpr = H/10. This choice of κ defines a prior with correlation values near 1/10 at
distance ρpr [66]. The original prior mean is set to µpr = 318 K. However, we equivalently
infer the zero-prior-mean process Θ0h − µpr as explained in the previous footnote.

4.2. Goal-oriented linear inverse problem. We now introduce the goal-oriented
feature of the problem. As stated earlier, we are only interested in the initial temperature
distribution over the CPU (i.e., in D1). Let Z be the restriction of Θ0h to the domain
of interest D1. Clearly, there is a linear map between Z and Θ0h, i.e., Z = OΘ0h with
O ∈ Rp×n and p � n. Thus, we have a linear-Gaussian goal-oriented inverse problem as
introduced in Section 2: {

Y = GΘ0h + E
Z = OΘ0h,

(4.3)

where both the marginal distribution of Θ0h and the likelihood Y |Θ0h are specified. (In
this example we denote the parameters by Θ0h rather than X.) We choose a finite element
discretization of the temperature field such that Θ0h ∈ R2400 and Z ∈ R370. Our goal is to
characterize optimal approximations of the posterior statistics of the QoI, Z|Y , for a given
set of observations (see Figure 4.2 (left)). In this case, computing the posterior distribution
of the QoI using direct formulas like (1.4) is infeasible as the QoI is a finite-dimensional
approximation to a distributed stochastic process, Θ(0)|D1 , and can be arbitrarily high-
dimensional depending on the chosen level of discretization.

6There is no loss of generality in assuming zero prior mean. If we are given a statistical model of the
form Y = GΘ0h + E, where Θ0h ∼ N (µpr,Γpr) has a nonzero prior mean, then we can trivially rewrite
this model as Ŷ := Y −Gµpr = G (Θ0h − µpr) + E for a modified data vector Ŷ and infer, equivalently, a
zero-prior-mean process Θ0h − µpr ∼ N (0,Γpr).
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The configuration of this problem highlights a crucial aspect of dimensionality reduction
of goal-oriented inverse problems. Ideally we would place the sensors on D1 since we are
interested in inferring the temperature field on the CPU. However, due to geometrical con-
straints, we are forced to place our sensors on the heat sink (D3). As a result, observations
are much more informative about the parameters in D3 than in D1. We see a hint of this
in Figure 4.2 (right), which shows the normalized difference between the prior and poste-
rior variance of the parameters, (Var(Θ0h) − Var(Θ0h|Y ))/Var(Θ0h). The prior variance
is reduced the most around the sensor locations in D3, which makes intuitive sense as the
data are increasingly less informative as we move away from the sensors.

We first focus on the approximation of the posterior covariance of the QoI. If we use the
suboptimal approximation introduced in (2.7), then we have to pay a considerable compu-
tational price as a result of the data being informative about directions in the parameter
space that are not relevant to the QoI. This issue is illustrated by the numerical results in
Figure 4.5. To set the stage, we begin with the posterior covariance Γpos of the parame-
ters Θ0h and construct the optimal approximation Γ̂pos = Γpr −KK> from Theorem 2.1.
Though this approximation is optimal for any given rank of the update, its convergence
in this problem is rather slow—as shown by the dotted blue line in Figure 4.5—because
there are many data-informed directions in the parameter space. (Notice the multitude of
sensors on the heat sink in Figure 4.1, each yielding observations at M successive times.)
If we now use Γ̂pos to yield an approximation of the actual posterior covariance of interest
ΓZ|Y by means of ΓZ|Y ≈ Γ̂Z|Y = O Γ̂posO> (i.e., the naïve approximation of (2.7)), then
the convergence of this approximation is still slow, as seen in green solid line of Figure 4.5.
This slow convergence can be easily explained. The optimal approximation Γ̂pos of Γpos
accounts first for those directions that are most informed by the data. These directions
correspond to modes with features near the sensors in D3 (see Figure 4.3), but they provide
little information about the parameters in the region of interest (D1).

On the other hand, if we use the optimal approximation of ΓZ|Y defined in Theorem
2.3, then convergence is remarkably fast, as illustrated via the red solid line in Figure 4.5.
Now we only need to update ΓZ along a handful of directions—say twenty—to achieve
a satisfactory approximation of ΓZ|Y . The key to achieving such fast convergence is to
confine the inference to directions in the parameter space that are most informed by the
data, relative to the prior, and that are relevant to the QoI. Moreover, these fundamental
directions can be explicitly extracted from a goal-oriented approximation of the posterior
covariance of the parameters, as explained in Lemma 2.7; three such directions are shown
in Figure 4.4.

We note that ΓZ|Y is by no means a low-rank matrix. (See its spectrum in Figure 4.7
(left)). This situation is fairly typical when dealing with large-scale inverse problems with
non-smoothing priors (e.g., Gaussian fields with correlation function of Matérn type) and
limited observations. In these situations, seeking an approximation of ΓZ|Y as a low-rank
matrix would be inappropriate; that is, classic dimensionality reduction techniques, e.g.,
Karhunen–Loève reduction [70, 61], are quite inefficient. Instead, low-dimensional structure
lies in the change from prior to posterior, due to the data being informative, relative to the
prior, only about a low-dimensional subspace of Rp. This fact justifies the choice of the
approximation classMZ

r for ΓZ|Y in (2.8). The efficiency of the approximation classMZ
r is

also evident from the sharp decay of the red curve in Figure 4.5: only a handful of directions
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in the prior-to-posterior update are needed for a good approximation of ΓZ|Y .
The optimal approximation of the posterior mean of the QoI as a low-rank linear function

of the data, as introduced in Theorem 2.9, also converges very quickly as a function of the
rank of the approximation, as shown in Figure 4.6. Once a low-rank approximation of
the form (2.25) is available, then one can compute an accurate approximation of µZ|Y (Y )
for each new realization of the data Y by simply performing a low-rank (r = 20 in this
case) matrix-vector product. See [26, 44, 68, 53, 28, 27] for a series of related efforts in a
non-goal-oriented but possibly non-Gaussian framework.

4.3. A nonlinear QoI. We conclude this section by applying the approximation for-
mulas introduced in this paper to a particular case of nonlinear goal-oriented inference.
Suppose that we are only interested in the posterior distribution of the maximum tem-
perature over D1 (see Figure 4.1). This is a useful QoI because the material properties
of a sensitive component (e.g., the CPU) might deteriorate above a certain critical tem-
perature (e.g., [18]). In this case, the QoI Ẑ := maxD1 Θ0h is a low-dimensional (in fact
scalar-valued) nonlinear function of the parameters. In general, let us write Ẑ = J (Θ0h)
for some nonlinear function J : Rn → R. Then we can cast the nonlinear goal-oriented
Bayesian inverse problem as {

Y = GΘ0h + E
Ẑ = J (Θ0h)

(4.4)

and try to characterize the posterior Ẑ|Y for a particular realization of the data. This
problem is nontrivial, however, as Ẑ|Y is non-Gaussian and cannot easily be characterized
by just two moments. In the most general case, one needs to resort to sampling tech-
niques such as MCMC [51] to characterize Ẑ|Y , or perhaps some deterministic alternative
[73, 90, 34, 74]. Unfortunately, it is still not well understood how to properly adapt these
techniques to exploit ultimate goals and bypass full inference of the parameters (see the
offline–online strategy of [64] for a related effort in the context of goal-oriented nonlinear
Bayesian inference). Though developing computationally efficient techniques to tackle gen-
eral problems like (4.4) is of fundamental importance, in this particular example we can
adopt a much simpler, yet effective, approach. Using the notation of this section, notice
that the nonlinear QoI Ẑ can be written as Ẑ = g(Z), where Z represents the inversion
parameters in the region of interest D1, and where g(x) = maxi(xi) for all x = (x1, . . . , xp).
Thus we can rewrite (4.4) as: 

Y = GΘ0h + E
Z = OΘ0h

Ẑ = g(Z).
(4.5)

Then we can approximate the Gaussian posterior distribution ofZ|Y using the goal-oriented
techniques presented in this paper, and finally we can push forward the latter distribution
through the nonlinear operator g to obtain a suitable approximation of Ẑ|Y . The non-
linear operator g is never approximated in this process. That is, we first compute the
posterior mean and the optimal goal-oriented approximation of the covariance of Z|Y us-
ing the results of Theorem 2.3, then we sample from the optimal approximating measure
ν̃Z|Y := N (µZ|Y (Y ), Γ̃Z|Y ) using the results of Lemma 2.8, and finally we push forward
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these samples through g : Rp → R to obtain approximate samples from the posterior dis-
tribution of the nonlinear QoI. We can easily estimate the quality of these approximate
posterior samples using bounds like (2.16). Note, however, that a bound like (2.16) quan-
tifies only the accuracy of the posterior moments, and does not yield an explicit measure
of distance between the non-Gaussian posterior distribution of Ẑ|Y and its corresponding
approximation. Nevertheless, the plot on the right of Figure 4.7 shows that the result-
ing approximation of the density of Ẑ|Y is indeed quite good for this particular choice of
nonlinear operator g.

Θ∞

D1

D3

~q(t)

~q = 0

Sensors

~q = 0

D2

Material αi at 20 ◦C Domain

— m/s2 —

Copper 1.11× 10−4 D1
Silicon 8.8 × 10−5 D2

Aluminum 8.42× 10−5 D3

Fig. 4.1. (left) CPU cooling problem. Inversion for the initial temperature field on D1 given noisy
temperature measurements on an aluminum heat sink (D3). The figure shows the problem configuration,
the locations of the sensors (black dots), and the boundary conditions for the heat equation describing time
evolution of the temperature field on the domain D := D1 ∪ D2 ∪ D3. (right) Material properties of the
different layers.
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Fig. 4.2. (left) Initial temperature field used to generate synthetic data according to the problem con-
figuration described in Section 4. This temperature field was not drawn from the prior distribution of Θ0h;
instead, it corresponds to a finer discretization of the continuous stochastic process Θ evaluated at the ini-
tial time. (right) Normalized difference between the prior and posterior variance of the parameters, i.e.,
(Var(Θ0h)− Var(Θ0h|Y ))/Var(Θ0h). The regions of greatest relative decrease of the variance are localized
around the sensor locations (black dots).

5. Conclusions. We have developed statistically optimal and computationally efficient
approximations of the posterior statistics of a quantity of interest (QoI) in a goal–oriented
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Fig. 4.3. Three eigenvectors (wi) of the matrix pencil (H,Γ−1
pr ) as defined in Theorem 2.1: w1 (left),

w6 (center), and w10 (right). These eigenvectors define the prior-to-posterior update in the optimal approx-
imation (2.5) of the posterior covariance of the parameters Γpos. Note that these leading eigenvectors have
features near the locations of the sensors in D3. This is the region where the data are most informative for
the parameters, but not necessarily for the QoI.

Fig. 4.4. Three vectors (q̃i) defining the prior-to-posterior update in the optimal goal-oriented approx-
imation of Γpos introduced in (2.17) (see Lemma 2.7). In particular, we show q̃1 (left), q̃3 (center), and q̃5
(right). One can interpret these vectors as directions in the parameter space that are informed by the data,
relative to the prior, and that are relevant to the QoI. The relevant features of the (q̃i) are concentrated
around the region of interest (D1). These directions should be contrasted with the modes in Figure 4.3, which
are strongly informed by the data but, at the same time, nearly irrelevant to the QoI.

linear–Gaussian inverse problem. The posterior covariance of the QoI is approximated
as a low-rank negative update of the prior covariance of the QoI. Optimality holds with
respect to the natural geodesic distance on the manifold of symmetric positive definite
matrices. The posterior mean of the QoI is approximated as a low-rank function of the
data, and optimality follows from the minimization of the Bayes risk for squared-error loss
weighed by the posterior precision matrix of the QoI. The minimization of this Bayes risk is
associated with the minimization of a Riemannian metric averaged over the distribution of
the data. These optimal approximations avoid computation of the full posterior distribution
of the parameters and focus only on directions in the parameter space that are informed
by the data and that are relevant to the QoI. These directions are obtained as the leading
generalized eigenvectors of a suitable matrix pencil, and reflect a balance among all the
ingredients of the goal–oriented inverse problem: prior information, the forward model,
measurement noise, and the ultimate goals.
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Fig. 4.5. (left) Convergence of the covariance approximations in the natural geodesic distance over the
manifold of SPD matrices (see Section 2.1). The blue dotted line shows the distance between the covariance
of the parameters Θ0h|Y (i.e., Γpos) and its optimal approximation Γ̂pos = Γpr−KK>, as a function of the
rank of K (see Theorem 2.1). The red line shows the distance between ΓZ|Y and its optimal approximation
introduced in Theorem 2.3, Γ̃Z|Y = ΓZ−KK>, as a function of the rank of K. Finally, the green line shows
the distance between ΓZ|Y and the suboptimal approximation (2.7) obtained as O Γ̂posO>. (right) Detail of
the figure on the left, with both axes rescaled.
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Fig. 4.6. The solid curve shows the error associated with the optimal low-rank approximation of the
posterior mean of the QoI, µZ|Y (Y ), given in Theorem 2.9). The error is measured as the square root

of E
[∥∥µZ|Y (Y )−A∗Y

∥∥2
Γ−1
Z|Y

]
and is a function of rank(A∗). The top right corner shows µZ|Y (Y ) for a

particular realization of Y (see Figure 4.2 (left)). The snapshots along the solid curve show the corresponding
approximation µZ|Y (Y ) ≈ A∗ Y for various ranks of A∗ and for the same realization of Y . Notice that the
approximation of the posterior mean of the QoI is already good with rank(A∗) = 20.

An important avenue for future work is the extension of these optimality results to the
case of nonlinear forward operators. Here, we expect that interpreting the QoI posterior
approximation as the result of composing the forward model with a carefully chosen pro-
jection operator, as in [31], may be quite helpful. Relaxing the Gaussianity assumptions on
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Fig. 4.7. (left) Eigenvalues of ΓZ|Y . For this problem configuration Z ∈ R370, so the matrix ΓZ|Y
is not low-rank. (right) The blue solid curve shows a kernel density estimate (KDE) of the exact posterior
density of the nonlinear QoI Ẑ := max(Z), i.e., the density of Ẑ|Y , constructed from 1 × 106 samples.
Notice that this density is non-Gaussian. The red dotted curve shows a KDE constructed with 1 × 106

samples from an approximation of Ẑ|Y obtained as follows: First we sample the approximate measure
ν̃Z|Y := N (µZ|Y (Y ), Γ̃Z|Y ) obtained from an optimal approximation, Γ̃Z|Y , of ΓZ|Y as a 20–dimensional
low rank update of ΓZ (see Theorem 2.3). Then, we push forward these samples through the nonlinear goal-
oriented operator g : Rp → R. The quality of the density approximation is already good for a rank–20 update.
These results are consistent with the theoretical bounds (2.16). (See, in particular, the error curves in Figure
4.5.)

both the prior distribution and the measurement noise are also important generalizations
of the present work.
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Appendix A. Rao’s metric between distributions. Let M = {πθ, θ ∈ Θ} be
a parametric family of probability densities indexed by θ = (θ1, . . . , θn) ∈ Θ [6]. Rao
considered a quadratic differential form given by

ds2 =
∑
i,j

gij(θ) dθi dθj , (A.1)

where gij(θ) = Eπθ [ ∂θi ln πθ ∂θj ln πθ ] are the entries of the Fisher information matrix, with
Eπθ denoting integration with respect to πθ [38]. The Fisher information matrix is a central
object in mathematical statistics (e.g., the Cramér-Rao inequality [84]). Intuitively, we can
interpret (A.1) as the variance of the function that describes the first order relative difference
between πθ and a contiguous density, πθ+dθ, on M [85]. The definition of a quadratic form
like (A.1) allows us to measure curves on M . Given a smooth curve γ : [0, 1] → Θ '
M , we can define its length as `(γ) :=

∫ 1
0 (
∑
i,j gij(γ(t)) dγi dγj)1/2 dt [36]. Thus, Rao’s

distance between a pair of distributions on M is simply their geodesic distance, i.e., the
length of the minimum length curve joining these distributions [85]. The quadratic form
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defined by the Fisher information matrix is invariant under regular reparameterizations of
M [84]. Thus, this fundamental invariance is also shared by Rao’s distance which yields an
intrinsic way of comparing distributions on M . Of course, it is possible to consider more
general quadratic differential forms not based on the notion of Fisher information. See [86]
for various examples of differential metrics derived from entropy functions or divergence
measures between probability distributions. See [4] for a modern treatment of information
geometry, the field at the intersection of statistics and differential geometry.

Appendix B. Proofs of the main results. The following two Lemmas, B.1 and
2.2, will be used to prove Theorems 2.3 and 2.9. We start with a result describing the
relationships between different eigenpairs of the Schur complements of a particular class of
covariance matrices that arises in Bayesian inverse problems.

Lemma B.1 (Eigenpairs of Schur complements). Let Σ � 0 be a matrix partitioned as

Σ =
(
A B
B> C

)
, (B.1)

where A and C are square matrices and B 6= 0. Then, A,C, and the Schur complements,
S(A) := C −B>A−1B and S(C) := A−BC−1B>, are also SPD matrices. Moreover:

1. If (β,w) is an eigenpair of (BC−1B>, A), then β < 1 and (1−β,w) is an eigenpair
of (S(C), A). Furthermore, if β 6= 0, then ((1 − β)−1, B>w) is an eigenpair of
(S(A)−1, C−1).

2. If β 6= 0 and (β,w) is an eigenpair of (BC−1B>, A), then (β(1− β)−1, B>w) is an
eigenpair of (C−1B>S(C)−1BC−1, C−1).

3. If w1, . . . , wk are linearly independent eigenvectors of (BC−1B>, A) with associated
eigenvalues β1 ≥ β2 ≥ · · · ≥ βk > 0, then B>w1, . . . , B

>wk are linearly independent.
Moreover, if k = rank(BC−1B>), then there can be at most k linearly independent
eigenvectors of (C−1B>S(C)−1BC−1, C−1) associated with strictly positive eigen-
values.

Proof. The fact that A, C, S(A) and S(C) are SPD matrices follows from [17]. (1)
From BC−1B>w = βAw we obtain S(C)w = (1− β)Aw, which also implies that β < 1 as
S(C) � 0 and A � 0. If β 6= 0, then B>w 6= 0 and

S(A)−1B>w = [C−1 + C−1B>S(C)−1BC−1 ]B>w
= [C−1B> + C−1B>S(C)−1(A− S(C)) ]w
= (1− β)−1C−1B>w.

where we used the Woodbury identity to rewrite S(A)−1. (2) It follows from (1) that ((1−
β)−1, B>w) is an eigenpair of (S(A)−1, C−1) and by S(A)−1 = C−1 +C−1B>S(C)−1BC−1

that (β(1−β)−1, B>w) is an eigenpair of (C−1B>S(C)−1BC−1, C−1). (3) If
∑k
j=1 ajB

>wj =
0, then A

∑k
j=1 βjajwj = 0, and therefore

∑k
j=1 βjajwj = 0 since A � 0, which leads

to βjaj = 0 for j = 1, . . . . , k since (wj) are linearly independent, and thus aj = 0
for j = 1, . . . . , k since βj > 0. Moreover, notice that rank(C−1B>S(C)−1BC−1) =
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rank(B>S(C)−1B) = rank(BC−1B>). Thus, there can be at most rank(BC−1B>) lin-
early independent eigenvectors of (C−1B>S(C)−1BC−1, C−1) with nonzero eigenvalues.

Proof of Lemma 2.2. Consider the identity Y = GX + E = GO†OX + G (I −
O†O)X + E = GO†Z + ∆, where O† := ΓprO>Γ−1

Z and ∆ := G (I − O†O)X + E. A
simple computation shows that E[(I − O†O)XZ>] = 0. Hence, (I − O†O)X and Z are
uncorrelated, and, more importantly, independent since they are also jointly Gaussian. It
follows that ∆ and Z are also independent since E was independent of X and Z = OX. In
the hypothesis of zero prior mean, the mean of ∆ is also zero. Moreover, Γ∆ = Var[G (I −
O†O)X] + Var[E] since X and E are independent. Simple algebra leads to the particular
form of Γ∆. �

We can now prove the main results of this paper.
Proof of Theorem 2.3. By applying [97, Theorem 2.3] to the linear Gaussian model

defined in Lemma 2.2, we know that a minimizer, Γ̂Z|Y , of the geodesic distance, dR,
between ΓZ|Y and an element of MZ

r is given by: Γ̂Z|Y = ΓZ −
∑r
i=1 η

2
i (1 + η2

i )−1 q̂iq̂
>
i ,

where (η2
i , q̂i) are the eigenpairs of (HZ ,Γ−1

Z ), with the ordering η2
i ≥ η2

i+1, the normalization
q̂>i Γ−1

Z q̂i = 1 and where HZ := O>† G> Γ−1
∆ GO† is the Hessian of the negative log–likelihood

Y |Z ∼ N (GO†,Γ∆). Moreover, [97, Theorem 2.3] implies that the distance, at optimality,
is given by d2

R(Γ̂Z|Y ,ΓZ|Y ) =
∑
i>r ln2( 1 +η2

i ) and that the minimizer is unique if the first
r eigenvalues of (HZ ,Γ−1

Z ) are distinct. Now let (λi, qi) be defined as in Theorem 2.3, with
λi > 0, and let Σ � 0 be the covariance matrix of the joint distribution of Y and Z, i.e.,

Σ =
(

ΓY GΓprO>
O ΓprG

> ΓZ

)
. (B.2)

By Lemma B.1[part 2] applied to (B.2), we know that (λi(1 − λi)−1 ,O ΓprG
> qi) are

eigenpairs of (HZ , Γ−1
Z ). Moreover, by Lemma B.1[part 3] we know that we can always write

a maximal set of linearly independent eigenvectors of (HZ , Γ−1
Z ), associated with nonzero

eigenvalues, as (O ΓprG
> qi). Thus, since f(λ) = λ(1 − λ)−1 is a decreasing function of λ

as λ ↓ 0, we must have η2
i = λi(1 − λi)−1 and we can assume, without loss of generality,

that q̂i = αO ΓprG
> qi for some real α > 0. Given the normalizations q̂>Γ−1

Z q̂ = 1 and
q>i (GΓprO> Γ−1

Z O ΓprG
> )qi = 1, it follows that α = 1. Simple algebra then leads to

(2.11) and (2.12). Notice, that λi > 0 and f(λi) > 0 imply λi < 1. This property will be
useful when proving Lemma 2.8. �

We now state a standard result that will be used in proving Lemma 2.5.
Theorem B.2 (Cauchy Interlacing Theorem (e.g., [59, 15])). Let A,B ∈ Rn×n be

symmetric matrices with B � 0 and let γ1 ≥ γ2 ≥ · · · ≥ γn be the eigenvalues of (A,B).
For any P ∈ Rn×p, with p ≤ n and full column-rank, let µ1 ≥ µ2 ≥ · · · ≥ µp be the
eigenvalues of (P>AP , P>B P ). Then:

γk ≥ µk ≥ γn−p+k, k = 1, . . . , p. (B.3)

Proof of Lemma 2.5. The first inequality in (2.14) follows from the optimality state-
ment of Theorem 2.3 since Γ̂Z|Y ∈ MZ

r . The second inequality in (2.14) follows from
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the Cauchy interlacing theorem (see Theorem B.2). Let γ1 ≥ γ2 ≥ · · · ≥ γn ≥ 1 be the
eigenvalues of ( Γ̂pos , Γpos ) and µ1 ≥ µ2 ≥ · · · ≥ µp be the eigenvalues of ( Γ̂Z|Y , ΓZ|Y ) =
(O Γ̂posO> , O ΓposO> ), where O is a full row-rank matrix. Then, by Theorem B.2,

γk ≥ µk ≥ 1, k = 1, . . . , p. (B.4)

In particular, since ln2(x) is monotone increasing on x > 1, we have:

dR( ΓZ|Y , Γ̂Z|Y ) = 1
2
∑
k

ln2(µk) ≤
1
2
∑
k

ln2(γk) ≤ dR( Γpos , Γ̂pos ), (B.5)

where clearly
∑
k>p ln2(γk) ≥ 0. �

The following two lemmas will be used in proving Lemma 2.6.
Lemma B.3. If Γ1 � Γ2 � 0, then |Γ1| ≥ |Γ2|
Proof. If Γ1 � Γ2, then there exists a S � 0 such that Γ1 = Γ2 + S. Thus, |Γ1| |Γ2|−1 =

|I + Γ−1/2
2 S Γ−1/2

2 | ≥ 1.

Lemma B.4. Let X ∼ N (µ,Σ) and Y ∼ N (0,Γ) with Γ � Σ � 0. Let g be a measurable
real-valued function such that

E[|g|2+α(Y )] <∞ (B.6)

for some α > 0. Then,

E[g2(X)] ≤ |Γ|
1/2

|Σ|1/2
exp

(
µ>Γ−1µ

α

)
E[|g|2+α(Y )]1/(1+α/2) (B.7)

Proof. Let fX and fY be the densities of X and Y , respectively, and MY the moment
generating function of Y . Since we have Σ−1 = Γ−1 + S for some S � 0, it follows that for
all x,

fX(x) ≤ K exp(µ>Γ−1 x) fY (x), (B.8)

where K := |Γ|1/2 |Σ|−1/2 exp(−µ> Γ−1 µ/2). Now we use Hölder’s inequality, with p =
1 + α/2 and q = p/(p− 1) so that 1/p+ 1/q = 1, to obtain:

E[g2(X)] ≤ K E[g2(Y ) exp(µ>Γ−1 Y )]
≤ K (E[|g|2p(Y )])1/p (E[exp(q µ>Γ−1 Y )])1/q

= K (E[|g|2p(Y )])1/pM
1/q
Y (q Γ−1µ)

= K (E[|g|2p(Y )])1/p exp(q µ>Γ−1µ/2)
= |Γ|1/2 |Σ|−1/2 (E[|g|2p(Y )])1/p exp((q − 1)µ>Γ−1µ/2)
= |Γ|1/2 |Σ|−1/2 exp(µ>Γ−1µ/α)(E[|g|2+α(Y )])1/(1+α/2),

where we used the fact that MY (t) = exp(t> Γ t/2) since Y ∼ N (0,Γ).

Proof of Lemma 2.6. By [33, Lemma 7.14] we have:

∣∣∣EνZ|Y [g]− Eν̃Z|Y [g]
∣∣∣ ≤ 2

√∫
|g|2 (πZ|Y + π̃Z|Y ) dHell(νZ|Y , ν̃Z|Y ) (B.9)
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where πZ|Y and π̃Z|Y are, respectively, the densitites of νZ|Y and ν̃Z|Y with respect to the
Lebesgue measure. Now notice that ΓZ|Y � ΓZ as well as Γ̃Z|Y � ΓZ . Thus, by Lemma
B.4, we have:

EνZ|Y [|g|2] + Eν̃Z|Y [|g|2] ≤ 2 |ΓZ |1/2

|ΓZ|Y |1/2
exp

( 1
β − 2 ‖µZ|Y (Y )‖2Γ−1

Z

)
EνZ [|g|β]2/β (B.10)

where we used the fact that |Γ̃Z|Y | ≥ |ΓZ|Y | since Γ̃Z|Y � ΓZ|Y (see Lemma B.3). Thus,
(2.16) follows from simple algebra. �

Lemma B.5. Let M := A(I−BB>)A> � 0 for a pair of compatible matrices A,B, and
let P be the orthogonal projector onto the range of A>. Then C := I − PBB>P � 0 and
M = ACA>.

Proof. Since M � 0, A> must be full column rank. Thus, by definition, P =
A>(AA>)−1A and PA> = I = AP . Hence M = ACA>. Now let Q := I − P and notice
that PQ = 0 and CQ = Q. Thus, for z 6= 0, 〈Cz, z〉 = 〈CPz, Pz〉+〈Qz,Qz〉 = 〈CPz, Pz〉+
‖Qz‖2. In particular, 〈CPz, Pz〉 = 〈PCPz, z〉 = 〈M(AA>)−1Az, (AA>)−1Az〉 ≥ 0 and it
is zero only if Pz = 0, in which case Qz 6= 0 and ‖Qz‖ > 0. Thus C � 0.

Proof of Lemma 2.7. We first need to show the equivalence Γ̃Z|Y ≡ O Γ̂∗posO>,
where Γ̂∗pos is defined in (2.17). Notice that O Γ̂∗posO> = ΓZ −

∑
i λi vi v

>
i with vi :=

O Spr ΠS>prG
>qi = O ΓprG

> qi since Π is a projector onto the rowspace of O Spr. The de-
sired equivalence follows by comparison with (2.11). In particular, it follows thatO Γ̂∗posO> �
0. Thus, in order to show that Γ̂∗pos is in the feasible set of (2.18) it remains to prove
that Γ̂∗pos ∈ Mr. Clearly, it just suffices to show that Γ̂∗pos � 0. Notice that Γ̃Z|Y =
O Spr(I −ΠBB>Π)S>prO> � 0 where BB> := S>prG

>∑r
i=1 qi q

>
i GSpr. Thus, we can apply

Lemma B.5 with M := Γ̃Z|Y , A := O Spr, C := I − ΠBB>Π, and get C � 0. In partic-
ular, this shows that Γ̂∗pos = SprC S

>
pr � 0 and thus Γ̂∗pos is in the feasible set of (2.17).

Optimality of Γ̂∗pos then follows almost immediately. By Theorem 2.3:

dR(ΓZ|Y ,O Γ̂∗posO>) = dR(ΓZ|Y , Γ̃Z|Y ) ≤ dR(ΓZ|Y , Γ̃) ∀ Γ̃ ∈MZ
r . (B.11)

In particular, we can consider Γ̃ of the form Γ̃ = O ΓO> for Γ ∈ Mr. Notice that Γ̃ � 0
since O is assumed to be full row-rank. This shows optimality of Γ̂∗pos according to (2.18).
�

Proof of Lemma 2.8. We first provide an explicit square root factorization of Γ̂∗pos,
defined in (2.17) (Lemma 2.7), as Γ̂∗pos = Ŝ∗pos (Ŝ∗pos)> for some matrix Ŝ∗pos. We claim that

Ŝ∗pos = Spr

(
r∑
i=1

(
√

1− λi − 1) q̄i q̄>i + I

)
(B.12)

where I is the identity matrix. and the (q̄i) are defined in (2.20). First of all, notice that
(B.12) is well defined since 1 > λi > 0 for all i = 1, . . . , r (see the proof of Theorem 2.3).
One can verify that (B.12) is indeed a valid square root of Γ̂∗pos. They key observation is
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that q̄i = S−1
pr q̃i and that the vectors (q̃i) are Γ−1

pr -orthogonal, i.e., q̃>i Γ−1
pr q̃j = δij . To see

this, consider the following identities:

q̃>i Γ−1
pr q̃j = q>i GSpr ΠS>pr Γ−1

pr Spr ΠS>prG
>qj = q>i GSpr ΠS>prG

>qj . (B.13)

Since Π = S>prO> Γ−1
Z O Spr, it must be that q̃>i Γ−1

pr q̃j = q>i GΓprO> Γ−1
Z O ΓprG

> qj = δij ,
for the (qi) are the generalized eigenvectors of the pencil (2.10), properly normalized. Now
notice that S̃Z|Y = O Ŝ∗pos and thus (2.17) implies that S̃Z|Y S̃>Z|Y = Γ̃Z|Y . �

Proof of Theorem 2.9. By applying [97, Theorem 4.1] to the linear Gaussian model
defined in Lemma 2.2, we know that a minimizer of (2.24) is given by: A∗ =

∑r
i=1 ηi(1 +

η2
i )−1 q̂iv̂

>
i , where (η2

i , q̂i) are eigenpairs of (HZ ,Γ−1
Z ) with normalization q̂>i Γ−1

Z q̂i = 1,
whereas (v̂i) are eigenvectors of (GO† ΓZ O>† G>,Γ∆) with normalization v̂>i Γ∆ v̂i = 1.
Moreover, [97, Theorem 4.1] tells us that the Bayes risk associated with the minimizer
A∗ can be written as: E[ ‖A∗ Y − Z ‖2Γ−1

Z|Y
] =

∑
i>r η

2
i + n, where n is the dimension of

the parameter space. The fact that the vectors (q̂i) can be written as q̂i = O ΓprG
> qi

for η2
i > 0 was proved in Theorem 2.3. Furthermore, in the proof of Theorem 2.3 we

showed that η2
i = λi(1 − λi)−1. Using the latter expression we can rewrite the minimizer

as A∗ =
∑r
i=1

√
λi (1− λi) q̂iv̂>i . If (v̂i) are eigenvectors of (GO† ΓZ O>† G>,Γ∆), then

they must also be eigenvectors of (GΓprO> Γ−1
Z O ΓprG

> , ΓY ). In particular, we can set
v̂i = α qi for some real α > 0. Given the normalizations q>i GΓprO> Γ−1

Z O ΓprG
> qi = 1

and v̂>i Γ∆ v̂i = 1, it must be α = λ
1/2
i (1− λi)−1/2. Simple algebra then leads to (2.25). �
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