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This paper addresses the challenge of design optimization under uncertainty when the de-
signer only has limited data to characterize uncertain variables. We demonstrate that the
error incurred when estimating a probability distribution from limited data affects the out-
of-sample performance (i.e., performance under the true distribution) of optimized designs.
We demonstrate how this can be mitigated by reformulating the engineering design prob-
lem as a distributionally robust optimization (DRO) problem. We present computationally
efficient algorithms for solving the resulting DRO problem. The performance of the DRO
approach is explored in a practical setting by applying it to an acoustic horn design prob-
lem. The DRO approach is compared against traditional approaches to optimization under
uncertainty, namely, sample-average approximation and a multi-objective optimization in-
corporating a risk reduction objective. In contrast with the multi-objective approach, the
proposed DRO approach does not use an explicit risk reduction objective but rather speci-
fies a so-called ambiguity set of possible distributions, and optimizes against the worst-case
distribution in this set. Our results show that the DRO designs in some cases significantly
outperform those designs found using the sample-average or multi-objective approaches.

I. Introduction

The importance of considering the nature of the uncertain parameters in engineering design has long
been established,1–3 the primary reason being that simply considering all parameters to be deterministic
tends to over-fit designs to the chosen parameter values. This results in a need to introduce ad-hoc safety
factors and/or degraded performance of the system when it is exposed to the true uncertain operating
environment.4,5

In design under uncertainty, the designer must decide how to characterize and represent the uncertainty.
The most prevalent approach is to treat the uncertain parameters as random variables, endowed with some
probability distribution.1,4 Other treatments and representations of uncertainty have also been established,6

such as interval or set-based uncertainty,7–9 and possibility theory.10 In this work we focus on the case of
a probabilistic representation of uncertainty, where the designer must specify a probability distribution for
the uncertain parameters. In practice the designer will never have perfect knowledge of how the underlying
system parameters vary, and thus will lack access to the true probability distribution governing an uncertain
parameter. Even if the true probability distribution were known, evaluating expected performance using this
distribution would likely involve many evaluations of the computational models representing the system of
interest, which for complex engineering systems becomes computationally infeasible.
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A common approach is to extract a sample of the uncertain parameters and model the expected per-
formance using the sample average. Optimizing the sample average as a function of the design parameters
yields the sample-average approximation (SAA) method of stochastic programming. In this paper we con-
sider problems for which a black-box computational model can be employed in the solution of an SAA
problem, but this model is tractable for only small values of the sample size. In other words, the designer’s
computational budget admits the solution of a SAA model with only a modest sample size.

Distributionally robust optimization (DRO) has emerged from within the optimization community as
an approach that explicitly accounts for the fact that one is never able to exactly specify a probability
distribution in practice.11–17 DRO weakens the requirement to specify a single probability distribution for the
uncertain parameters. Instead, it requires the designer to select a set of possible probability distributions—
we then optimize for the worst-case distribution within this set. Evidence from the literature shows that for
some problems, when compared with the SAA approach, a DRO approach can improve the performance of
a design when evaluated “out-of-sample”, i.e., when using the true probability distribution.18,19

The first contribution of this paper is to show how engineering design under uncertainty problems can be
formulated and solved using DRO. A subtlety in our application is that typically DRO is used when only a
finite number of data samples are available from some real world process. In the engineering design context,
we wish to characterize the distribution in performance of designs over some range of uncertain parameters.
In this context, it is often the case that samples of the uncertain parameter are readily available, but analyzing
a sample (i.e., computing the performance of a design at a data sample) is computationally expensive. Thus,
in our context limited data refers to the fact that our finite computational budget only allows the analysis of
a modest number of samples. The DRO formulation mitigates the effect of a limited sample size by explicitly
seeking designs that are robust to deviations in the sample.

The second contribution is to provide computationally efficient algorithms for solving the engineering
design DRO problem, with computational cost comparable to solving an SAA problem, when the set of
distributions is constructed using either the L2-norm, the Kullback-Leibler (KL) divergence, or a Wasserstein
distance.

Much of the supporting theory presented in the DRO literature involves asymptotic results, or results that
rely on strict assumptions.12,14,15,19,20 The final contribution of this paper is to showcase the effectiveness
of DRO as a practical approach to engineering design optimization. To this end we apply the formulation to
a black-box model design problem using small samples of the uncertain parameters. We compare the DRO
approach to the traditional SAA approach, and show that DRO is able to outperform SAA in this setting.

A commonly used competing approach to introducing robustness in engineering design is to augment the
expected performance objective with a variance reduction objective and perform multi-objective optimization
(MOO). Recent work has shown that under certain assumptions the DRO is almost the same as a mean-
variance optimization.19 In this paper we show that, for our design problem, the DRO designs outperform
those found using mean-variance multi-objective optimization (MOO).

The outline of this paper is as follows. Section II formulates the problem of optimizing a design based
on limited data using SAA. Section III presents an alternative formulation of the design problem as a DRO
problem, and presents algorithms for solving the resulting optimization problems. Section IV presents the
results of the DRO approach applied to an illustrative design problem. These results are used to analyze the
performance of the approach, and compare it to the baseline SAA approach. Section V compares the DRO
approach with an MOO approach commonly used in engineering design. This mean-variance optimization
approach introduces robustness through variance reduction, rather than through distributional ambiguity.
Section VI presents a discussion of the results and suggests possible areas to explore in future work. Finally,
Section VII concludes the paper.

II. Design Under Uncertainty Using Limited Data

This section formulates the problem of design optimization under uncertainty adapted to the setting in
which the designer does not know the true distribution of the uncertain parameters, but instead has access
to a sample consisting of a limited number of realizations from this unknown distribution. A methodology
for optimizing the mean performance of designs using SAA is also introduced, and applied to an illustrative
design problem in order to highlight the potential consequences of designing using limited data.
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II.A. Problem Formulation

The vector of design variables is denoted by x ∈ X , where X is the feasible design space encoding constraints
on the design. To represent the uncertain parameters, a probability space (Ω,F ,Pu) is defined, with sample
space Ω, σ-algebra F , and probability measure Pu. The uncertain parameters are defined as a random
variable u : Ω → U which has dimension equal to the number of uncertain parameters in the design
problem. The uncertainty space, U , represents the space of all possible realizations of the random variable,
u. Subscripts denote particular realizations of the uncertain parameters, i.e., ui = u(ωi) for some ωi ∈ Ω.
The quantity of interest (QoI) of our system is represented as a function, Q (x,u), of the design variables x,
and the uncertain variables, given by the random variable u. As the QoI, Q (x,u), is a function of the random
variable u, it too is a random variable, with a probability measure denoted PQ. Note that the randomness
in the QoI is induced only by the randomness in u. In a slight overload of notation, Q(x,ui) will be used
to denote the deterministic value of the QoI evaluated at a realization of the uncertain parameters, ui. For
complex engineering systems, evaluating the function Q(x,ui) typically requires solving a computationally
expensive model of the system that could take hours or even weeks to solve on a supercomputer.

The problem of design optimization under uncertainty is to find a vector of optimal design variables that
produces a distribution of the QoI that is favorable in some sense. In this work we focus on optimizing the
mean of this distribution. Hence, the performance of a design, x is defined to be

Z(x) = EPQ
[Q (x,u)] , (1)

where EPQ
denotes the expectation under the distribution PQ. Assuming that a lower QoI is favorable, the

design optimization problem can be written

P : min
x∈X

Z(x). (2)

The optimal objective value of P is denoted by Z∞ ≡ Z(x∞), where x∞ is a corresponding optimal design.
A key limitation in solving P is that it requires many evaluations of Z(x), for different designs, x, evaluated

during the design optimization loop. Computing Z(x) exactly is generally impossible using only a black-box
function Q(x,ui). This is because the designer is unable to exactly propagate the continuous distribution
over u through the black-box function, which only takes discrete values as input. A common approach is to
instead use a sample-based approximation of Z(x). To do so accurately would require many evaluations of
the expensive black-box function Q(x,ui) for samples ui. Repeating this precise approximation process for
every iteration of the design optimization is generally computationally intractable. In practice, the designer
can usually only afford a small number of black-box function evaluations to analyze each iteration of the
design. Consequently, Z(x) must be approximated using only a small sample of m realizations of the random
variable Q, namely Q(x,ui) for i = 1, . . . ,m, where u1, . . .um are randomly sampled from Pu.

Due to this limitation, the designer will be forced to approximate the optimization problem P, and solve a
different optimization problem that can be solved using the limited data available. Solving this approximate
problem produces a design, denoted by xm, with corresponding performance Zm ≡ Z(xm).

In this paper we will discuss existing methodologies for using a limited number of black-box function
evaluations to produce the design xm, and propose a new methodology based on DRO. In any case, there
will inevitably be error in approximating P using only a small number of function evaluations. Consequently,
the solution xm obtained by the designer will, on average, perform worse than the true solution x∞, i.e.,
Zm ≥ Z∞. With this in mind, we seek design methodologies that are robust to this error in the sense
that over all possible sample draws the methodology produces designs that exhibit good performance when
realized under the true distribution of uncertainty.

For the analysis throughout this paper, since it is impossible to enumerate all possible sample draws,
we instead simulate T = 500 random sample draws, each consisting of m random realizations from Pu. We
evaluate the design methodology by analyzing the average performance of designs over all sample draws,
defined by

µ(Zm) =
1

T

T∑
t=1

Ztm, (3)

where Ztm denotes the value of the performance, Zm, for sample draw t. We will also evaluate the risk level
of the methodology, as indicated by the performance in the worst-case sample draws. For this we use the
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95th percentile of the performance over all sample draws. Assuming we have ordered the sample indices so
that Z1

m, ..., Z
T
m is in ascending order, we denote the 95th percentile of Zm by ρ(Zm), defined by

ρ(Zm) = min
{
Ztm | t > 0.95T

}
. (4)

II.B. Motivation: Performance of a sample-average approximation approach

One existing approach for approximating the full optimization problem P (Eqn. 2) utilizes the sample-average
approximation (SAA).21 For a given random sample from Pu, with realizations denoted u1, ...,um, the SAA
estimate of the performance of a design, x, is given by

Ẑm(x) =
1

m

m∑
i=1

Q(x,ui). (5)

The SAA approach is justified by the fact that if the sample is drawn i.i.d from Pu, then Ẑm(x) is an
unbiased estimate of Z(x). Furthermore, by the strong law of large numbers Ẑm(x) will converge almost
surely to Z(x), and by the Central Limit Theorem, the variance of the estimate Ẑm(x) will decrease with
a rate O(1/m). The SAA approach aims to optimize the true performance Z(x), by optimizing the SAA
estimate of performance. This gives the SAA problem

S : min
x∈X

Ẑm(x). (6)

A design that solves S is denoted by xm. The optimal objective value of S is denoted Ẑm ≡ Ẑ(xm). Note that
Ẑm is the in-sample performance of the design, i.e., the average performance over the sample of uncertain
variables, u1, ...,um. In practice, what is more important is Zm, the performance of the design xm out-of-
sample, i.e., under the true distribution Pu. Note that Zm is not known by the designer, since it requires
the calculation of the right-hand side of Eqn. 1 which is usually computationally intractable in this setting,
as explained in the previous section.

To demonstrate potential pitfalls of the SAA methodology, we apply it to an illustrative design problem.
We consider the problem of designing an acoustic horn to achieve maximum efficiency. In this problem the
two design variables, x1 and x2, determine the shape of the acoustic horn flare. The uncertain parameter
u is the wave number (an operating condition of the horn). The wave number is assumed to follow a fixed
truth distribution, Pu = Uniform(1.3, 1.5). We stress that the design methodologies described in this paper
assume that the designer does not know this truth distribution, but they are able to sample from it. The
QoI, Q (x,u) is the amount of internal reflection generated by the horn design, operating at a given wave
number. A smaller QoI is more favorable. A complete description of this design problem is provided in
Appendix A.

We simulate T = 500 realizations of a practical design process. In each case we draw a sample of size
m from Pu, and use this to solve S using an interior point methoda. We run the optimization algorithm for
100 iterations to simulate a scenario where the designer has a fixed computational budget allowing 100m
function evaluations. We denote the resulting design xtm. We evaluate the out-of-sample performance of
this design, Ztm, by computing Eqn. 1 using a 1000-point Monte-Carlo estimate for the expectation. For
the sake of comparison, we also compute an estimate for the true optimal design x∞, and its out-of-sample
performance, Z∞. This is done by solving S using a very large sample size of m = 1000. Note that Ztm, x∞,
and Z∞ are all considered to be too computationally expensive to be computed during a practical design
process, but are computed here to enable comparison. Figure 1 gives histograms showing the distributions of
Zm values across the T = 500 sample draws, for sample sizes m = 5, 10, 20. Also indicated on each histogram
are the estimated true optimal performance, Z∞, the mean performance across all sample draws, µ(Zm),
and the 95th percentile of performance across all sample draws, ρ(Zm).

We see that for some sample draws, Zm is close to our estimate of the true optimal objective Z∞ = 0.029.
However, the long right tails of the distributions indicate that there are also many sample draws for which
Zm is far from Z∞. This is especially the case for small sample sizes. In the m = 5 case, the 95th percentile
is ρ = 0.044. This indicates that, in the worst 5% of sample draws, the SAA method results in designs that
produce a QoI over 50% higher (worse) than the true optimum.

aAs implemented in the function fmincon, included in the MATLAB Optimization Toolbox22

4 of 26



m = 5

Z
∞

µ
(Z

m
)

ρ
(Z

m
)

2

4

6

8

m = 10

2

4

6

8

P
er
ce
n
ta
ge

of
sa
m
p
le

re
al
iz
a
ti
on

s

m = 20

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

2

4

6

8

Out-of-sample performance of the optimized design, Zm [×10−2]

Figure 1: Histograms showing the performance of SAA designs computed using each of the T = 500 sample
draws of size m. The optimal, mean, and 95th percentile of performance over all sample draws are also
indicated.

To see how this poor performance arises, Figure 2 displays the QoI over the range of the uncertainty, for
the best and worst performing horn designs obtained over all the sample draws of size m = 5. Recall that
we define the performance, Zm to be the mean value of the QoI over this range. We see that in the best
sample draw, good in-sample performance translates into good out-of-sample performance (i.e., performance
under the true uniform distribution). Using SAA with this sample thus produces a design with near optimal
performance (Zm = 2.9× 10−2). In contrast, the realizations in the worst sample are clustered around one
end of the range of the uncertainty. As a result, the design computed using this sample is over-fitted to the
sample, ultimately leading to poor out-of-sample performance (Zm = 7.2 × 10−2). These results show that
with small sample size the SAA approach is susceptible to over-fitting, motivating the question of whether an
alternative methodology can produce designs that exhibit better out-of-sample performance when provided
with the same data.

III. Distributionally Robust Design Optimization

In this section we present a principled method for introducing the notion of robustness against variability
in sample distributions into the design problem, using the mathematical framework of DRO. Section III.A
formulates the problem of finding distributionally robust designs from a given sample of the uncertain
parameters. These are designs that achieve good mean performance under the sample distribution (in-sample
performance), while requiring that this performance be robust to deviations in the sample distribution used.
Section III.B discusses how to select a set of probability distributions against which to robustify the design.
Section III.C presents efficient algorithms for solving the resulting distributionally robust design problem
using three different notions of distance. Finally, Section III.D discusses solving the outer optimization
problem to find an optimal design in the DRO problem.

III.A. Overview of the Distributionally Robust Approach

The central idea behind a distributionally robust approach is to optimize the design while considering a
set of possible distributions, rather than a single distribution.12,23 The set of distributions used in the
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Figure 2: Performance of two SAA designs over the uncertainty space U . These are the designs that exhibit
the best and worst mean performance over all designs computed using different sample draws of m = 5
realizations of the random variables.

optimization is termed the ambiguity set ,13 which we denote by P. In the context of engineering design, the
distribution we are interested in is the distribution of the QoI, namely, PQ. As the QoI is computed using an
expensive black-box function, we generally do not know the true distribution PQ. Instead we have a finite
computational budget which we use to generate a small sample from this distribution, Q(x,ui), i = 1, ...,m.
This sample is used to construct an ambiguity set of distributions that are considered in the DRO approach.
Note that specifying the ambiguity set in this way does not require knowledge of the true distributions PQ

or Pu or knowledge about properties like their support or moments.
The DRO method seeks a design that performs well for all distributions within the ambiguity set. This

is achieved by solving a minimax problem to optimize the worst-case expected performance under any
distribution within the ambiguity set. Using the notation introduced in Section II.A, the distributionally
robust design optimization problem can be written

D(P) : min
x∈X

max
p∈P

m∑
i=1

piQ(x,ui). (7)

where p ∈ P denotes probability distributions within the ambiguity set P. We denote the optimal design
found in D(P) by xm, where the ambiguity set, P, used in the optimization will be clear from the context,
or explicitly denoted using the notation xm|P .

The inner maximization problem in D involves finding the worst-case expectation over all distributions
in the ambiguity set. This inner maximization problem gives the worst-case distribution

p∗(x) = argmax
p∈P

m∑
i=1

piQ(x,ui). (8)

The outer minimization problem finds the design that achieves the best possible mean performance under
the worst-case distribution p∗(x).
The following subsections describe the key challenges in employing the distributionally robust approach
described above. In particular, we outline an approach to constructing the ambiguity set, solving the
inner optimization problem to find the worst-case distribution in the ambiguity set, and solving the outer
optimization problem to find the design that optimizes the worst-case performance within the ambiguity set.
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III.B. Constructing the ambiguity set

The tractability and success of the distributionally robust approach relies on a careful selection of the
ambiguity set P. In the context of engineering design, the function Q(x,ui) is typically a computationally
expensive black-box function. This makes solving the inner optimization problem (Eqn. 8) intractable for a
general ambiguity set P. To see this, note that if we allowed the support of p to change, we would have to draw
a new sample ui, i = 1, ...,m at each iteration of the inner optimization problem. This would consequently
require evaluating Q(x,ui) m times at every iteration of the inner optimization problem, rendering the
DRO approach significantly more computationally expensive than the traditional SAA approach, which only
requires m function evaluations for the entire inner optimization problem.
In order for the DRO approach to be an attractive alternative to the SAA approach, we wish to formulate
the DRO inner optimization problem in a way that allows us to solve the problem with only m function
evaluations. The way we achieve this is by fixing the sample ui, i = 1, ...,m, and restricting the ambiguity
set to contain only distributions with support on this sample. This allows us to evaluate Q(x,ui) for
ui, i = 1, ...,m only once for the entire inner optimization problem.

Under the aforementioned restriction to distributions with fixed, finite support, the ambiguity set can be
defined as a set of discrete probability distributions represented by vectors p that assign probabilities to each
of the m realizations in an associated sample, i.e., pi gives the probability that the random variable u takes
the value ui, for i = 1, ...,m. If we consider only the empirical distribution associated with the sample, then
the ambiguity set becomes a singleton, P = {p̂}. This reduces the problem to the SAA problem S (Eqn. 6).
In the DRO approach, we acknowledge the fact that the empirical distribution p̂ does not perfectly reflect
the true probability distribution. This is done by including additional distributions in the ambiguity set.

To assist with notation, we define Ωm ⊆ Rm to be the set of all possible discrete probability distributions
that could be associated with a sample of size m, i.e.,

Ωm = {p ∈ Rm :

m∑
i=1

pi = 1, pi ≥ 0 i = 1, ...,m}. (9)

In general, any ambiguity set we consider will be a subset of Ωm. We aim to include in the ambiguity set
all distributions that are a plausible reflection of the true distribution. To this end, we define a function
D( ·, · ) : Ωm × Ωm → R≥0, that measures the distance (i.e., a non-negative scalar that measures the degree
of similarity) between two discrete probability distributions in the set Ωm. We then construct the ambiguity
set P ⊆ Ωm to contain all distributions that are sufficiently similar to the empirical distribution given by the
sample data. The allowable distance from the empirical distribution, r, is termed the radius of ambiguity.
Using these definitions, the ambiguity set constructed using the distance function D, is given by

PD(p̂, r) = {p ∈ Ωm : D(p, p̂) ≤ r}. (10)

One decision to make when constructing the ambiguity set is the choice of r, the radius of ambiguity,
which determines the size of the set. Increasing the size of the ambiguity set allows the designer to be almost
certain that it will include the true distribution. However, this leads to over-conservatism and, consequently,
poor mean performance of the resulting design. To see this, consider expanding the ambiguity set to include
every possible distribution. This gives rise to the usual worst-case optimization problem, since the worst-case
distribution will always be one in which all the probability density is assigned to the worst possible realization
of the uncertainty. In many real situations this is an unrealistic candidate for the true distribution, and so
accounting for this distribution in an optimization for mean performance is generally an overly conservative
approach. The effect of the radius of ambiguity on the performance of the resulting DRO designs is explored
in Section IV.

The other important decision to make when constructing the ambiguity set is the choice of the distance
function, D( ·, · ). A good function is one that accurately measures how plausible a given distribution is,
given our known data on the uncertainty, so that as r increases we add distributions that are increasingly
implausible. The following subsection introduces three of the distance functions studied in this work.

III.C. Finding the worst-case distribution

In this section we present three distance functions that are amenable to the construction of an ambiguity
set using a sample of realizations of the uncertain variables. In particular, these distance functions compare
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discrete probability distributions supported on the sampled values. As described in the previous section, we
leverage this restriction of the support in order to present computationally efficient algorithms for solving
the inner optimization over the resulting ambiguity sets.

III.C.1. L2-norm ambiguity

One possible distance function utilizes the L2 or Euclidean norm between two vectors in Ωm, and is defined
by

DL2(p̂,p) = ‖p̂− p‖2 =

√√√√ m∑
i=1

(p̂i − pi)2. (11)

The L2-norm can be interpreted as a modified χ2 distance. Consequently, the ambiguity set generated using
this distance can be interpreted as the set of probabilities satisfying a goodness of fit test in relation to the
empirical distribution (see Ref. 24 for details on this interpretation).

Using the L2-norm, we define the ambiguity set as the set of all distributions within a given L2 distance
of the empirical distribution. We continue to denote the radius of ambiguity by r, where it will be clear from
the context that this is measured in the L2-norm. To this end, we define the L2-norm ambiguity set as

PL2( p̂, r ) = { p ∈ Ωm : DL2(p̂,p) ≤ r } . (12)

Note that after a particular value of r = rmax, the ambiguity set will contain all possible distributions, i.e.
PL2(p̂, rmax) = Ωm. Increasing r beyond rmax will thus have no effect on PL2. Note also that rmax depends
on m. We introduce a normalized form of the radius of ambiguity to assist in the selection of r, and facilitate
size comparisons between ambiguity sets generated using different distance functions. The normalized radius
of ambiguity is defined as

r̄ = r/rmax ∈ [0, 1] . (13)

The allowable range of the radius of ambiguity can be expressed as r̄ ∈ [0, 1], regardless of m.
Recall that when p̂ corresponds to the empirical distribution for an i.i.d. sample, we have the special

case that p̂ = 1
m . In this case we can derive rmax analytically:

rmax(m) = DL2(p̂, e1) =

√√√√( 1

m
− 1

)2

+

m∑
i=2

(
1

m

)2

=

√
1− 1

m
, (14)

where the degenerate distribution ei ∈ Ωm has ei = 1, and all other entries set to 0.
Beyond a certain value of r̄, PL2 will not be contained within the interior of the probability simplex Ωm,

and will thus include distributions that assign a probability of zero to one or more outcomes in the sample. A
criticism of the L2-norm distance is that as the ambiguity set grows, it will include such distributions before
other distributions that are more plausible, i.e. those that assign all outcomes in the sample a non-zero
probability.

Solving the inner maximization problem given by Eq. (8) using an L2-norm ambiguity set involves finding
the distribution p ∈ PL2 that generates the worst possible expected performance of a given design. Given a
design, x, a sample of the uncertain parameters, ui, for i = 1, ...,m, and a radius of ambiguity r, this can
be formulated as a convex optimization problem, involving a linear objective function subject to linear and
second-order cone constraints:

max
p

m∑
i=1

piQ(x,ui) (15)

s.t. ‖p̂− p‖2 ≤ r
p ∈ Ωm

Much of the appeal of using an ambiguity set defined by the L2-norm is that this problem can be solved in
closed-form using Algorithm 1. For a full discussion, derivation, and proof of this algorithm see Ref. 24.
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Algorithm 1 Compute the worst-case probability distribution in a given L2 ball.

Input:
Discrete reference distribution p̂,
Function values at distribution support Q(x,ui) ≡ Qi ,
Radius of L2 ambiguity set r.

Output:
Worst-case discrete distribution p∗, on the same support as p̂.

1: m = length(p̂)
2: K = {1, 2, ...,m}
3: while |K| > 1 do
4: k = m− |K|
5: Q̄ =

1

(m− k)

∑
i∈K

Qi

6: s =

√
1

(m− k)

∑
i∈K

(Q2
i − Q̄2)

7: if k = 0 then

8: pi = p̂i +
Qi − Q̄√
m s

r, i ∈ K
9: else

10: for i ∈ K do

11: pi = p̂i +
1

(m− k)

(∑
i/∈K

p̂i +
√

(m− k)(r2 − ∑
i/∈K

p̂2
i )− (

∑
i/∈K

p̂)2
Qi − Q̄

s

)
12: end for
13: pi = 0, i /∈ K
14: end if
15: if pi ≥ 0 ∀i ∈ K then
16: p∗ = p
17: return p∗

18: else
19: Find critical j ∈ K. This is the last index of pi < 0 to become positive

as we decrease r. This can be done by setting pi = 0 in line 10 and
solving for r.

20: Set K = K \ {j}.
21: end if
22: end while
23: pi = 0, i /∈ K
24: pi = 1, i ∈ K
25: p∗ = p
26: return p∗
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III.C.2. KL divergence ambiguity

Another function that can be used to compare the degree of similarity between two discrete probability
distributions is the KL divergence (or relative entropy). The KL divergence has been used extensively in the
literature to construct ambiguity sets for DRO.14–17 The KL divergence between the reference distribution,
p̂, and a distribution (of equal dimension), p, is defined by

DKL(p̂,p) =

m∑
i=1

p̂i log

(
p̂i
pi

)
. (16)

The KL divergence has two cases that require special consideration. In this work, we adopt the conventions
that for any non-zero a,

0 log
0

a
= 0, (17)

a log
a

0
=∞. (18)

The first convention (17) is adopted because lim
x→0

x log(x) = 0. The second convention (18) ensures that a

distribution that assigns a zero probability to a realization that was observed in the sample will result in
an infinite KL divergence. This ensures that such distributions will not be included in the KL divergence
ambiguity set. This is a favorable contrast with the L2-norm ambiguity set, which can include distributions
that assign realizations observed in the sample a likelihood of zero.

Since the KL divergence function is not symmetric, the ordering of the arguments matters. In this work
we choose the reference distribution p̂ as the first argument when constructing the KL ambiguity set. This
is motivated by a recent paper by Van Parys et al., which showed that this choice is favorable (see Ref. 15
for more details).

We define the KL ambiguity set in a way that is analogous to the L2-norm ambiguity set. We denote the
radius of ambiguity by r, where it will be clear from the context when this is measured in terms of the KL
divergence, and define

PKL( p̂, r ) = { p ∈ Ωm : DKL(p̂,p) ≤ r } . (19)

As in the previous section we define a normalized radius of ambiguity r̄. However in this case there is no
well-defined maximum radius rmax. In fact, we could increase r indefinitely, with the boundaries of PKL

getting asymptotically close to the probability simplex Ωm. Instead of normalizing by the maximum radius
as we did in the L2-norm case, we instead define the normalized KL divergence radius of ambiguity to be

r̄ =
maxp∈PKL

‖p− p̂‖∞
1− 1

m

∈ [0, 1]. (20)

This is essentially a normalized L∞-norm radius. The maximum L∞ norm gives the maximum difference
that any single probability is allowed to vary, over all distributions within the ambiguity set. Note that there
are other valid ways to parameterize the size of the ambiguity set, e.g., by measuring the volume proportion
of Ωm contained in the ambiguity set. However, care must be taken that the chosen parameterization is
consistent across different dimensions, m, and distance function D.

Given a design x, a sample of the uncertain parameters ui, for i = 1, ...,m, and a KL divergence
radius of ambiguity r, the inner maximization problem given by Eq. (8) can be formulated as a convex
optimization problem. This is done by introducing new variables zi, i = 1, ...,m and performing simple
algebraic manipulation in order to reformulate the KL divergence constraint to yield linear and exponential
cone type constraints:

m∑
i=1

p̂i log

(
p̂i
pi

)
≤ r ⇐⇒


pi ≥ p̂i exp

(−zi
p̂i

)
, i = 1, . . . ,m

m∑
i=1

zi ≤ r
(21)
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Under this reformulation, the maximization can be written as

max
p,z

m∑
i=1

piQ(x,ui) (22)

s.t. pi ≥ p̂i exp

(−zi
p̂i

)
, i = 1, . . . ,m

m∑
i=1

zi ≤ r

p ∈ Ωm

The problem can be solved in this form by many commercial convex optimization packages, for example the
CVX package,25,26 which uses a successive approximation method. However, since this problem needs to be
re-solved at every iteration of the design optimization, the computational cost of a brute force optimization
such as this would quickly accumulate. To achieve further speedup, the optimization problem in Eqn. 22 has
been analyzed in detail in the literature, and has been shown to be reducible to a scalar root-finding problem.
For details on this analysis, see Ref. 27. Algorithm 2 outlines how to solve the optimization problem using
this approach, which is far more computationally efficient than solving Eqn. 22 directly.

Algorithm 2 Compute worst-case distribution within a KL ball

Input:
Discrete reference distribution p̂,
Function values at distribution support Q(x,ui) ≡ Qi ,
Radius of KL ambiguity set r.

Output:
Worst-case discrete distribution p∗, on the same support as p̂.

1: m = length(p̂)
2: K = {i : p̂i = 0}
3: K̃ = {i : p̂i > 0}

4: Define f(ν) =
∑
i∈K̃

p̂i log(ν −Qi) + log

(∑
i∈K̃

p̂i
ν −Qi

)
, for ν > max

i∈K̃
Qi

5: for i ∈ K do
6: pi = 0
7: end for
8: I∗ = K ∩ argmaxiQi
9: if ∃ k ∈ I∗ such that f(Qk) < r then . If multiple k exist, choose any one

10: ν = Qk
11: r = 1− exp(f(ν)− r)
12: pk = r
13: else
14: Find ν such that f(ν) = r using a line search
15: r = 0
16: end if
17: for i ∈ K̃ do

18: qi =
p̂i

ν −Qi
19: end for
20: for i ∈ K̃ do

21: pi =
(1− r)qi∑m

i=1 qi
22: end for
23: p∗ = p
24: return p∗

11 of 26



III.C.3. Wasserstein ambiguity

The third function we consider for the construction of the ambiguity set is the Wasserstein distance. Am-
biguity sets based on Wasserstein distance are common in the DRO literature, and have been shown to
produce tractable formulations with good performance in a variety of settings.20,28–30 A notable point of
difference in our setting is that we restrict our attention to considering distributions with a fixed discrete
support, namely the sample ui, i = 1, ...,m.

Informally, the Wasserstein distance measures the degree of dissimilarity between two probability distri-
butions by computing the cost of transforming one distribution into the other by transporting probability
mass. The Wasserstein distance of order k is defined as the kth root of the cost incurred when performing
such a transformation in an optimal way. In this case, we define the cost of transporting a unit of probability
mass from ui to uj to be the kth power of the Euclidean distance, i.e., dij = ‖ui − uj‖k2 . In this work we
will consider the Wasserstein distance with k = 1, which is often referred to as the earth-movers distance.

Mathematically, we can compute the Wasserstein distance between two discrete distributions, p̂ and p,
by solving a transportation problem in the form of a linear program:

DW(p̂,p,u1, ...,um) = min
fij

m∑
i=1

m∑
j=1

fijdij (23)

s.t.

m∑
i=1

m∑
j=1

fij = 1

m∑
i=1

fij ≤ p̂i
m∑
j=1

fij ≤ pi

fij ≥ 0 ∀ i, j
We define the Wasserstein ambiguity set in a way that is analogous to the L2-norm and KL divergence
ambiguity sets. We again denote the radius of ambiguity by r, where it will be clear from the context when
this is measured in terms of the Wasserstein distance, and define

PW( p̂,u1, ...,um, r ) = { p ∈ Ωm : DW(p̂,p,u1, ...,um) ≤ r } . (24)

As in the previous sections we wish to define, for convenience, a normalized radius of ambiguity

r̄ = r/rmax ∈ [0, 1] . (25)

In this case, rmax represents the maximum possible Wasserstein distance between the empirical distribution
p̂, and another distribution p, both supported on a random sample u1, ...,um drawn from Pu. It follows
that

rmax = max ‖ui − uj‖k2
(

1− 1

m

)
(26)

where the multiplier on the right follows from the fact that p̂ = 1
m is fixed, and the maximizing p will be

always be a degenerate distribution. If the true distribution Pu is known, then the maximization is taken
over all possible realizations of ui and uj from Pu. If Pu has finite support, then max ‖ui − uj‖k2 can often
be found analytically by taking ui and uj to lie on the boundary of the support. If Pu has infinite support,
rmax will be unbounded in general. In this case, we choose to define rmax by truncating the support of Pu

appropriately (e.g., using a 99% confidence interval or 3-σ bounds). In the general case that Pu is not known,
we define rmax by taking the maximimum over realizations ui and uj observed in our sample.

Given a design x, a sample of the uncertain parameters ui, for i = 1, ...,m, and a Wasserstein distance
radius of ambiguity r, the inner maximization problem given by Eq. (8) can be formulated as a convex
optimization problem:

max
p

m∑
i=1

piQ(x,ui) (27)

s.t. DW(p̂,p,u1, ...,um) ≤ r
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Note that the implicit minimization that arises in the constraint via the definition of DW (in (23)) can be
ignored. This is because finding a feasible (not necessarily optimal) objective value in (23) that satisfies the
constraint in (27), guarantees that the optimal objective value in (23) will also satisfy the constraint in (27).

III.D. Solving the outer optimization problem

Recall that the outer optimization in the distributionally robust design optimization problem (7) involves
finding the design that optimizes the worst-case performance over all distributions within the ambiguity set.

Using the methods outlined in the previous sections, we can solve the inner problem to compute a worst-
case distribution p∗(x), for a given design, x. We can thus write the outer optimization problem in the
following form:

min
x∈X

m∑
i=1

p∗i (x)Q(x,ui). (28)

Note that this is similar to the form of the SAA problem, S (Eqn. 6), with the worst-case distribution p∗(x)
taking the place of the empirical distribution p̂.

We adopt an iterative approach to solving this optimization problem. The initial design, x = x0, is
typically the current or nominal design that we wish to further optimize. For example, in the acoustic horn
model problem (detailed in appendix A) we set the initial design to be a simple linearly expanding horn
flare, and then optimize this further by considering more complex geometries. At each iteration of the outer
design loop, we compute Q(x,ui) for i = 1, ...,m. We then solve the inner optimization problem to compute
p∗(x), using the approaches outlined in previous sections. In the engineering design optimization setting,
the computational cost is dominated by the cost of evaluating the expensive black-box function Q(x,ui).
Note that by our construction, solving the inner problem requires no additional evaluations of the expensive
function Q(x,ui), so that we are able to compute the objective function of the outer problem (28) using
only m evaluations of the expensive black-box function. This is the same number of function evaluations
per iteration as would be required by an SAA approach. By this argument we make the case that the
computational cost of the DRO approach is roughly equivalent to the SAA approach.

Given the ability to compute the objective function as described above, there exist many different strate-
gies for iteratively improving the design. The overall computational cost of the design process will depend
on how many iterations the strategy requires to reach an optimal design. Comparison of different algorithms
for solving this outer problem is outside the scope of the current work. Details of the specific algorithm we
use to solve the acoustic horn illustrative design problem are presented in the following section.

IV. Performance of the Distributionally Robust Approach

This section explores the performance of the DRO design methodology outlined in the previous section. In
Section IV.A we investigate how the method trades off mean performance with the risk level in performance,
and also compare and contrast the performance of distance functions used to construct the ambiguity set.
Section IV.B then analyzes how the performance of the DRO approach depends on the distribution of the
underlying uncertainty.

IV.A. Mean-risk tradeoff

Section III.B discussed how enlarging the ambiguity set trades off mean performance over all sample draws,
versus robustness in performance between draws. In this section, we study how effectively the DRO method-
ology is able to make this trade-off, for the L2-norm, KL divergence, and Wasserstein distance ambiguity sets.
We do this using computational experiments on the acoustic horn design problem (described in Appendix A).
In an effort to minimize the effect of random sampling, we use the same T = 500 random samples from Pu

when comparing the different ambiguity sets. For each sample, we compute distributionally robust designs
xm by solving problem D using each of the three formulations of the ambiguity set. In the problem we study,

the black-box function that returns Q(x,ui) also returns derivative information, namely, ∂Q((x,ui))
∂x . This

allows us to adopt a gradient-based iterative procedure to solve the outer optimization problem described in
Section III.D. In particular, we use an interior point methodb. To compute each design we run the algorithm

bAs implemented in the function fmincon, included in the MATLAB Optimization Toolbox22
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for 100 iterations. This corresponds to a scenario where the designer has a fixed computational budget of
100m black-box function evaluations. This approach works well for this particular application, since the
QoI is generally smooth and its derivatives are readily available. In cases where derivative information is
not available, or the black-box function Q(x,ui) is highly non-linear and/or non-convex, a more careful
treatment of the outer problem would be required. However, we note that such careful treatment would also
be required to use the SAA approach to optimize such a function.

For each design we evaluate the out-of-sample performance using Eqn. 1. These designs will in general
differ depending on the radius of ambiguity used. Hence we repeat the experiment (using the same samples)
for 21 different values of r̄ encompassing the full range r̄ ∈ [0, 1]. For each r̄ value we compute the mean
performance, µ(Zm), and the 95th percentile or risk level in performance, ρ(Zm), over the T sample draws
(see Eqn. 3 and Eqn. 4). Additionally, in order to provide further information about the spread in performance
of the resulting designs over the T sample draws, Table 1 in Appendix B presents additional statistics of Ztm
over the T sample draws, for each methodology studied in this section.

Using this information the performance of the DRO methodology for each formulation of the ambiguity
set can be described by a curve, parameterized by r̄, of mean performance versus risk in performance over
all sample draws. Figure 3 below plots these mean-risk trade-off curves for sample sizes of m = 5, 10, and 20.
Also shown for comparison is our estimate of the true optimum performance, Z∞, that would be obtainable
if the designer had an infinite computational budget.

To analyze these results, it is worth recalling that when the radius of ambiguity is zero, the DRO problem,
D, is equivalent to the SAA problem, S. As we increase the radius of ambiguity, r̄, we increase the amount
of distributional robustness enforced in the designs. At first, adding robustness leads to an improvement
in both the mean and risk objectives, for all sample sizes studied. This means that using a small value
of r̄ > 0 produces better average out-of-sample performance than using SAA and optimizing directly for
average in-sample performance. However, after a critical radius of ambiguity is reached, increasing the
radius further results in worse mean performance, and a greater risk level in performance. The potential
improvement gained by using the DRO methodology over the SAA methodology increases as the sample
size, m, is reduced. This suggests that the DRO method is most effective when available data are most
scarce. The mean-risk curve corresponding to the KL divergence ambiguity set reaches the critical point
at a better mean and risk level than the mean-risk curve for the L2-norm or Wasserstein ambiguity sets.
This means that if the optimal value of r̄ is chosen for each sample size and ambiguity set combination, the
DRO approach using a KL divergence ambiguity set will, on average, produce designs with the best mean
performance and lowest risk level in performance.

We define the optimality gap as the difference between the best performance attainable by a method
and the true optimum performance. For m = 5, the DRO approach with KL divergence ambiguity set is
able to reduce the opimality gap in mean performance by 66% compared to SAA. For m = 10 and m = 20,
the reductions in the mean performance optimality gap are 65% and 46%, respectively. The corresponding
reductions in the optimality gap in terms of the risk level in performance are 56%, 69%, and 51% for
m = 5, 10, 20 respectively.

IV.B. Effect of the underlying distribution

In this section we investigate how the shape of the probability distribution governing the uncertain param-
eters affects the performance of the DRO approach for design using small sample sizes. When applying the
methodology to the acoustic horn model problem in the previous sections, we used a uniform truth distribu-
tion for the uncertain parameter. In this section, we repeat the previous experiments, this time with a new
truth distribution, given by:

u ∼ PN
u = Normal(1.4, 0.0577). (29)

The mean and standard deviation of the normal distribution were chosen to be equal to those of the uniform
distribution used in the previous sections. The computational experiments outlined in Section IV.A were
repeated using the normal distribution. Figure 4 shows the mean performance vs. the risk level in perfor-
mance over all T samples. The analogous mean-risk curves for the uniform distribution (as seen in Figure
3) are shown for comparison. Also shown is the estimated true optimum performance, Z∞, for the uniform
and normal distributions respectively. Table 2 in Appendix B presents additional statistics of Ztm over the
T sample draws, for the normally distributed uncertainty.
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Figure 3: Mean-risk tradeoff curves for designs computed using sample draws of size m = 5, 10, 20 and the
DRO approach with L2-norm, KL divergence, and Wasserstein distance ambiguity sets. Also shown is the
true optimal performance.

The mean-risk curves for the two distributions are qualitatively similar. Under the normally distributed
uncertainty, increasing the radius of ambiguity from zero still almost always results in an improvement in
both mean performance across the samples, and the risk level in performance across the samples. However,
in comparison to the uniformly distributed uncertainty, the critical radius–after which a further increase is
detrimental–occurs much sooner. As a result, the potential performance gain by using the DRO approach
compared to the SAA approach (which is equivalent to r = 0) is smaller for the normally distributed
uncertainty. Furthermore, there appears to be almost no difference in performance between the L2-norm
and K-L divergence ambiguity sets under normally distributed uncertainty. In this case the Wasserstein
distance ambiguity set again performs worse than the L2-norm and K-L divergence ambiguity sets, giving
only a slight improvement in mean and risk level for the m = 5 and m = 10 cases. In the m = 20 case, the
Wasserstein ambiguity set provides negligible benefit over the SAA approach.

These results show that for the acoustic horn design problem we study, the DRO methodology is still
able to outperform the SAA approach under normally distributed uncertainty, but to a lesser extent than
under uniformly distributed uncertainty.
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Figure 4: Comparison between mean-risk trade-off curves for designs computed using normally distributed
and uniformly distributed uncertainty. Results are for sample sizes m = 5, 10, 20 and the DRO approach
with both L2-norm and K-L divergence ambiguity sets.

V. Comparison Between Distributional Robustness and Robustness Through
Variance Reduction

In this section we compare the DRO methodology described in Section III, with a commonly used
formulation for design under uncertainty that introduces robustness through variance reduction. To this
end, we first analyze whether the addition of a variance reduction objective results in a reduction in the risk
level of out-of-sample performance, and how this compares to the results obtained using a DRO approach. We
then show that designs found using the DRO methodology naturally exhibit reduced out-of-sample variance,
despite the absence of an explicit variance reduction objective in the formulation.

V.A. Formulation of variance reduction through multi-objective optimization (MOO)

A common approach to introducing robustness against uncertainty into a design is to augment the SAA
objective in S (Eqn. 6) by adding a weighted penalty on the variability in the QoI. This amounts to casting
the problem as a MOO problem, in which the designer optimizes for mean performance, while simultaneously
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minimizing the variability in performance, under the distribution of the uncertainty. Note that in our context,
we are ultimately not interested in reducing the out-of-sample variance in the performance of a given design.
Instead, we are interested in how reducing in-sample variance during the design optimization can ultimately
result in an improvement in the out-of-sample mean performance of designs, which is our primary interest.
This section formulates a MOO problem adapted to the setting in which the designer only has access to a
random sample of values of the uncertain variables.

In order to optimize for both the mean and variability of in-sample performance, we introduce a trade-
off parameter λ, which governs the relative importance placed on the mean objective versus the standard
deviation objective. Note that in the case λ = 0, the designer optimizes for the mean performance under the
empirical distribution, and thus the MOO problem reduces to the SAA problem, S (Eqn. 6). Increasing λ
increases the degree of importance placed on achieving robustness through variance reduction. In this way,
selecting the λ parameter is analogous to selecting the r̄ parameter for the ambiguity set in the DRO problem,
D. The MOO problem for jointly optimizing the in-sample mean and standard deviation in performance over
a sample of the uncertain parameters, u1, ...,um, with associated empirical distribution p̂, can be written as

M(λ) : min
x∈X

(1− λ) Ep̂ [Q(x,u)]︸ ︷︷ ︸
Mean

+λσp̂ [Q(x,u)]︸ ︷︷ ︸
Std. Dev.

, (30)

where

Ep̂ [Q(x,u)] =

m∑
i=1

p̂iQ(x,ui),

σp̂ [Q(x,u)] =

√√√√ m∑
i=1

p̂i(Q(x,ui)− Ep̂ [Q(x,u)])2,

λ ∈ [0, 1].

For a given value of λ, we solve M(λ) (using the same gradient-based procedure as was used to solve the
DRO and SAA problems), and denote the resulting optimal design by xm(λ). As in Section II.A, we are
interested in the out-of-sample performance of designs, i.e., how xm(λ), performs under the true distribution
Pu, rather than the sample distribution p̂. In addition to the out-of-sample mean performance of a design,
Z(x) (Eqn. 1), we also define the out-of-sample standard deviation in the performance of a design, and denote
this by

S(x) = σPu [Q (x,u)] . (31)

Thus the out-of-sample standard deviation of a MOO design, xm(λ), is denoted Sm(λ) ≡ S(xm(λ)). For
comparison, we also define the true optimal MOO designs, x∞(λ), that the designer would only be able to
obtain if they had an infinite computational budget, and could thus fully characterize the true distribution
PQ. The mean and standard deviation in performance of these designs are denoted by Z∞ ≡ Zm(x∞(λ))
and S∞ ≡ Sm(x∞(λ)) respectively. Throughout this section, we suppose that the fixed truth distribution
of the uncertainty is Pu ∼ Uniform [ 1.3, 1.5 ], and we use the same T = 500 random sample draws as those
used in Sections II and III.

V.B. Mean-Risk Tradeoff

In Section III we showed that when supplied with limited data the DRO methodology is able to produce
designs with better out-of-sample performance than the SAA approach. It could be argued that the variance
reduction objective in the MOO approach prevents the optimization from over-fitting to the given sample,
thus leading to better out-of-sample performance. To investigate whether this is the case, we repeat the
analysis of Section IV.A, this time using the MOO approach, and compare the results to those obtained
using the DRO approach. These mean-risk trade-off curves for the MOO and DRO approaches are shown in
Figure 5. In this figure, we show results for values of λ ∈ [0, 0.5]. Values of λ ∈ (0.5, 1] are omitted, as they
were found to result in increasingly poor out-of-sample mean performance and are therefore not of interest
in our context. We see that the mean-risk curves for the MOO approach are qualitatively similar to those of
the DRO approach, in the sense that increasing λ from zero (i.e., adding some importance to the variability
objective) improves both the mean and the risk level in out-of-sample performance over repeated trials. As
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Figure 5: Mean versus 95th percentile curves generated using MOO, with varying sample size, for the acoustic
horn design problem. Each curve corresponds to a sample size m = 5, 10, 20, and is computed by averaging
over T = 500 samples, respectively. Each point on a curve corresponds to a particular value of λ ∈ [ 0, 0.5 ].

in the DRO approach, increasing λ past a critical value leads to over-conservatism and consequently poor
performance. We see that when the optimal values of λ and r are used, the DRO approach is able to achieve
better mean performance, and a lower risk level in performance than the MOO approach.

From these results, we can conclude that adding a small variance reduction objective does make the
design methodology robust to poor realizations of the sample, but to a lesser degree than optimizing for
distributional robustness directly.

V.C. Mean-Variance Tradeoff

Traditionally when MOO is used in engineering design, the canonical result sought is the trade-off curve
between the two objectives, in this case mean performance and variability in performance, parameterized
by the trade-off parameter λ. When the true distribution PQ is available this curve is termed the Pareto
frontier, and describes the performance of the set of designs that achieve an optimal convex combination of
Z∞(λ) and S∞(λ). When PQ can not be perfectly characterized, e.g., due to a constrained computational
budget, the true Pareto frontier must be approximated. In this section we investigate how the DRO and
MOO methods compare in their ability to approximate the Pareto frontier using small samples.

It is important to note that the objective function in M(λ) involves only the in-sample mean and vari-
ability in performance. Thus, being an optimizer of M(λ) does not necessarily guarantee good out-of-sample
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mean and variance in performance, and thus the MOO method may not result in the best approximation of
the Pareto frontier.

In the case of the MOO approach, for each sample we compute a set of designs that solve M(λ) for values
of λ ∈ [ 0, 0.5 ]. For each of these designs we compute the out-of-sample mean performance, Zm(xm(λ)),
and variability in performance, Sm(xm(λ)). These quantities are then averaged over the T = 500 samples.
Similarly, using the DRO approach, for each sample we compute a set of designs that optimize D, using a
KL ambiguity set and 20 uniformly spaced values of r̄ ∈ [ 0, 1 ]. Again we compute Zm(xm) and Sm(xm) for
each design, and average these over all T = 500 samples.

Figure 6 shows the mean versus standard deviation trade-off curves, for the MOO and DRO approaches,
for sample sizes m = 5, 10, 20. The Pareto frontier is included for comparison. Recall that the µ(·) operator
indicates the mean of these values over all of the T realizations (see Eqn. 3). In this figure, we once again
show results for values of λ ∈ [0, 0.5]. Values of λ ∈ (0.5, 1] are omitted, as they were found to result in
increasingly poor out-of-sample mean performance, which is our primary interest.
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Figure 6: Mean versus standard deviation curves generated using MOO, with varying sample size, for the
acoustic horn design problem. Each curve corresponds to a sample size m = 5, 10, 20, and is computed by
averaging over T = 500 samples, respectively. Each point on a curve corresponds to a particular value of
λ ∈ [ 0, 0.5 ].

Focusing first on the MOO approach, we see that the mean-variability curves for a finite sample size,
m, do not coincide with the Pareto frontier (which effectively corresponds to an infinite sample size). The
shape of the curve also changes as the sample size is decreased. For small m, we see that optimizing for
the in-sample mean performance does not give the best out-of-sample mean performance. Instead, shifting
some importance onto the standard deviation objective (i.e., increasing λ from zero) actually results in an
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improvement in the out-of-sample mean performance, while also achieving lower out-of-sample variability
in performance. In this way it appears that more consistently performing designs are less susceptible to
over-fitting, and are thus better able to generalize from in-sample to out-of-sample performance.

The mean-variability curves for the DRO approach are in-fact closer to the Pareto frontier than those
obtained using the MOO approach. This means that for the acoustic horn problem we studied, designs
found using DRO are able to achieve a closer to optimal combination of out-of-sample mean performance
and variability in performance.

VI. Discussion

In Section IV we compared the DRO approach with the SAA approach, for different values of the radius
of ambiguity r. In all the cases studied, we see that the marginal value of the DRO approach, i.e., the
improvement in design performance using the DRO approach over the SAA approach in the limit as the
radius of ambiguity tends to zero, is positive. This means that adding some robustness to the design problem
was always beneficial. Furthermore, this improvement in performance occurs in both the average performance
and the risk level in performance. Although robust optimization is often viewed as a risk averse approach,
these results suggest that the DRO approach is also beneficial to a risk neutral designer.
Given that increasing the radius of ambiguity away from zero appears to be generally beneficial, a natural
question to ask is whether the optimal radius of ambiguity can be selected a-priori. Although it is difficult
to answer this concretely, our results reveal some trends that could guide this decision. In particular, we see
that optimal value for the radius of ambiguity increases as the sample size is decreased. This agrees with the
intuition that a greater degree of robustness is beneficial when the designer has less information with which
to characterize the uncertainty. One difficulty that became apparent in this work is that the optimal value of
the radius of ambiguity heavily depends on how it is parameterized. In this work we suggest mitigating this
by defining a normalized radius of ambiguity that is consistent across different formulations of the ambiguity
set, and different sample sizes.

In Section V we analyzed the performance of the DRO approach against a mean-variance MOO approach.
These results showed that the DRO designs are able to achieve a better mean and variance in performance
when compared with the MOO designs. This is in spite of the fact that DRO never explicitly optimizes
for a reduction of variability. This suggests that when the designers objective is to minimize out-of-sample
variability in performance, a DRO formulation could perform better than minimizing in-sample variance.

Another important question is how the benefits of the DRO approach manifest in the resulting designs.
To provide some insight and a possible answer to this question, consider that a single sample draw can be
used to compute a single design xm, which is an estimate of the true optimal design x∞. Since each design
xm obtained by SAA depends on the random sample drawn, the estimator xm is a random variable. In
other words, every time we draw a sample, we will compute a different realization of xm. Depending on
the optimization problem, and underlying distribution of uncertainty, the estimator xm can be biased or
unbiased with a variance that decreases linearly with sample size. If we compute xm using DRO, then the
variance of the estimator for a given sample size will in general be smaller than the variance of the SAA
estimator due to estimator shrinkage.31 The DRO estimator will have a bias even if the SAA estimator
is unbiased, but the detrimental effect of this bias on out-of-sample performance will be dominated by the
improvements due to shrinkage. In summary, the DRO approach outperforms the SAA approach on average
by way of reducing the variance in the resulting designs, across possible sample draws.

Although the distributionally robust approach in this paper has been demonstrated on a single problem,
the formulation and algorithms make no specific assumptions about the structure of the problem. The
approach is therefore applicable to a wide range of design problems, and is particularly suitable for problems
where only a small number of samples can be evaluated to solve the optimization under uncertainty problem.
The effects of uncertainty on the quantity of interest vary depending on the system in question. Testing the
DRO approach on additional design problems could reveal whether certain characteristics of the system of
interest influence the performance of the method.

In this paper we have investigated uniformly and normally distributed uncertainty. Our results suggest
that normally distributed uncertainty is less amenable to the DRO approach than uniformly distributed un-
certainty for the design problem we studied. This suggests that characteristics of the underlying distribution
(e.g., skewness, heavy tails) of the uncertainty could influence the performance of the method. Further study
into different distributions would be beneficial in order to gain reliable insights as to which distributions are
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most amenable to the DRO methodology.
We considered the setting in which the designer has access to a sample of realized values of the uncertain

parameters. Another avenue for future work is to extend the distributionally robust design formulation
to alternative settings. For example, the formulation could be applied to the situation where the designer
has limited knowledge about the distribution of uncertain parameters. For example, if the designer has
knowledge about moments of the distribution, they could construct an ambiguity set that includes moment
constraints, This type of ambiguity set has been explored previously in the literature.12

VII. Conclusions

This paper has demonstrated how engineering design under uncertainty problems can be formulated
and solved using DRO. The DRO approach addresses the particular challenge of design under uncertainty
using limited data and the overfitting that can occur. We have demonstrated the potential benefits of
a distributionally robust approach using a practical design optimization under uncertainty problem. Our
approach outperforms the widely used SAA and MOO-based approaches. In particular, the DRO designs have
better out-of-sample performance than SAA or MOO designs, with greater gains when the number of samples
to solve the optimization under uncertainty problem is small. The DRO formulation is computationally
tractable, as the algorithms presented in this paper require the same computational budget per design
iteration as SAA and MOO.
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27Filippi, S., Cappé, O., and Garivier, A., “Optimism in Reinforcement Learning and Kullback-Leibler divergence,” Com-
munication, Control, and Computing (Allerton), 2010 48th Annual Allerton Conference on, IEEE, 2010, pp. 115–122.

28Pflug, G. and Wozabal, D., “Ambiguity in Portfolio Selection,” Quantitative Finance, Vol. 7, No. 4, 2007, pp. 435–442.
29Shafieezadeh-Abadeh, S., Esfahani, P. M., and Kuhn, D., “Distributionally Robust Logistic Regression,” Advances in

Neural Information Processing Systems, NIPS, 2015, pp. 1576–1584.
30Gao, R. and Kleywegt, A. J., “Distributionally Robust Stochastic Optimization with Wasserstein distance,” arXiv

preprint arXiv:1604.02199 , 2016.
31Copas, J. B., “Regression, Prediction and Shrinkage,” Journal of the Royal Statistical Society: Series B (Methodological),

Vol. 45, No. 3, 1983, pp. 311–335.
32Ng, L. W. and Willcox, K. E., “Multifidelity Approaches for Optimization Under Uncertainty,” International Journal

for Numerical Methods in Engineering, Vol. 100, No. 10, 2014, pp. 746–772.
33Eftang, J. L., Huynh, D., Knezevic, D. J., and Patera, A. T., “A Two-step Certified Reduced Basis Method,” Journal of

Scientific Computing, Vol. 51, No. 1, 2012, pp. 28–58.
34Udawalpola, R. and Berggren, M., “Optimization of an Acoustic Horn with Respect to Efficiency and Directivity,”

International Journal for Numerical Methods in Engineering, Vol. 73, No. 11, 2008, pp. 1571–1606.
35Ng, L. W., Huynh, D. P., and Willcox, K., “Multifidelity Uncertainty Propagation for Optimization Under Uncertainty,”

12th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference and 14th AIAA/ISSMO Multidisciplinary
Analysis and Optimization Conference, AIAA, 2012, p. 5602.

22 of 26



A. Model Problem Formulation

In this appendix we introduce a motivating example design problem: designing an acoustic horn for
maximum efficiency subject to an uncertain operating condition. This design problem is used throughout
the paper to explore different design methodologies. Namely, it is used to generate the computational results
in Sections II and IV.

We suppose that we are tasked with optimizing the design of an acoustic horn in order to minimize the
amount of internal reflection present, and thus maximize the efficiency of the horn. In order to analyze how
the design of the horn affects the amount of internal reflection, we utilize a computational model. A brief
summary of the model is presented in Figure 7 below and the description that follows. For more details on
the theory behind the acoustic horn and the computational model used, we refer the reader to References
32,33 and 34.

Figure 7: The geometry of the acoustic horn model (Adapted from Ng et al.35). The design variables used
in this thesis are h1 and h2, while the remaining parameters shown are considered fixed.

The exterior domain is truncated by a circular absorbing boundary of radiusR = 25. The non-dimensional
horn geometry is axisymmetric and is parameterized by five variables. We consider three of these to be fixed
parameters: the horn inlet length L = 5, and half-width a = 0.5, and the outlet half-width b = 3. The
remaining two variables are design variables h1 and h2, corresponding to the half-widths at two uniformly
spaced points in the horn flare (see Figure 7). Both design variables h1 and h2 are constrained to lie within
the interval [ a, b ] = [ 0.5, 3 ]. The governing equation is the non-dimensional Helmholtz equation,

∇2v + k2v = 0, (32)

where v is the non-dimensionalized pressure, and k is the wave-number, which we treat as the uncertain
operating condition of the horn. The boundary conditions on the horn inlet Γin, horn surface ΓN , and far
field boundary ΓR are given by

Γin : ikv + ∂v
∂n = 2ik, (33)

ΓN : ∂v
∂n = 0, (34)

ΓR : ∂v
∂n −

(
ik − 1

2R + 1
8R(1−ikR)

)
v = 0, (35)

where n is a unit vector normal to the corresponding boundary, and i =
√
−1. The governing equation is

solved to compute v using a reduced basis finite element model with n = 116 basis vectors. The QoI for the
acoustic horn model is the reflection coefficient:

s =

∣∣∣∣∫
Γin

v dΓ− 1

∣∣∣∣ , (36)
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which is a fractional measure describing how much of an incoming wave is internally reflected in the horn,
as opposed to being transmitted out into the environment. It is thus considered a measure of the horn
efficiency, with a lower reflection coefficient giving more favorable performance. Thus, framing the acoustic
horn design problem using the notation introduced in Section II.A, we have:

Design variables: x = [ h1, h2 ]
>
, (37)

Design space: X = [ 0.5 , 3 ]× [ 0.5 , 3 ] , (38)

Uncertain parameters: u = k, (39)

Uncertainty space: U = [1.3, 1.5], (40)

Output QoI Q (x,u) = s. (41)

We perform an exploratory analysis of the acoustic horn design space to show how the horn design affects
the reflection coefficient for different operating wave-numbers. For this study, we suppose that the wave
number follows a fixed truth probability distribution

u ∼ Pu = Uniform(1.3, 1.5). (42)

We compute three point-wise optimal designs. These are the designs that achieve the lowest QoI for u =
k = 1.3, 1.4, and 1.5, respectively. These are denoted x1.3, x1.4, and x1.5 respectively. We also compute
the design that achieves minimum mean performance,xµ, and the design that achieves minimum variance in
performance, xσ, over the uncertainty space. Figure 8 shows the horn flare geometry of these horn designs,
and the corresponding QoI over the uncertainty space.

1.3 1.4 1.5
0

5

10

15

20

25

x1.3

x1.4

x1.5

xµ

xσ

Uncertain parameter, u

Q
u
an

ti
ty

of
in
te
re
st
,
Q
(x
,u

)
[1
0
−
2
]

Design Performance over the Uncertainty Space, U

x1.3x1.4

Horn Flare Designs

x1 x2

x1.5 xµxσ

Figure 8: Performance of designs that exhibit optimal mean performance (xµ), minimal variation in perfor-
mance (xσ), or optimal performance at a particular value of the uncertain variable (x1.3, x1.4, x1.5).

We see that designs x1.3, x1.4 and x1.5 all exhibit low reflection at the corresponding design wave numbers,
but also exhibit reduced off-design performance. We also see from the performance of xσ that it is possible
to obtain a horn design with consistent performance over the range of wave numbers, however, this comes
with the downside that QoI is relatively high everywhere. In fact, the performance of xµ ends up being
superior to xσ at almost all wave numbers.
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B. Tabulated Results

This appendix presents tabulated statistics of the data used in Figures 3 and 4 respectively. These tables
provide further insight (beyond the mean and 95th percentile information presented in Figures 3 and 4) into
the spread in design performances over the T = 500 different sample draws we studied.
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