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a b s t r a c t

This paper describes uncertainty quantification (UQ) of a complex system computational tool that
supports policy-making for aviation environmental impact. The paper presents the methods needed to
create a tool that is “UQ-enabled” with a particular focus on how to manage the complexity of long run
times and massive input/output datasets. These methods include a process to quantify parameter
uncertainties via data, documentation and expert opinion, creating certified surrogate models to
accelerate run-times while maintaining confidence in results, and executing a range of mathematical
UQ techniques such as uncertainty propagation and global sensitivity analysis. The results and discussion
address aircraft performance, aircraft noise, and aircraft emissions modeling.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Uncertainty quantification (UQ) broadly entails quantitative
characterization, management, and reduction of uncertainty in
applications, and encompasses many different elements (e.g.,
uncertainty analysis, sensitivity analysis, optimization under
uncertainty, design validation, and model calibration). UQ is
becoming an essential aspect of the development and use of
computational simulation and modeling tools. For example, the
National Academy of Sciences has recognized the “ubiquity of
uncertainty in computational estimates of reality and the necessity
for its quantification” [28] while NASA established a formal
standard setting requirements and recommendations for uncer-
tainty assessment in the use of modeling and simulation to
support critical decisions [27]. This paper describes how state-of-
the-art UQ methods together with surrogate models are combined
to achieve UQ of a real-world complex system modeling tool that
supports policy-making for aviation environmental impact.

The FAA Office of Environment and Energy, in collaboration
with Transport Canada and NASA, is developing a suite of
computational tools to support decision and policy-making for
aviation environmental impact. This Environmental Toolsuite
includes integrated models of airline economics, environmental
economics, aircraft operations, aircraft performance, aircraft emis-
sions, noise, local air quality, and global climate. The main goal of
the effort is to develop a new critically needed capability to

characterize and quantify the interdependencies among aviation-
related noise and emissions, impacts on health and welfare, and
industry and consumer costs, under different policy, technology,
operational, and market scenarios. A comprehensive UQ effort is
an important component of this tool development, with the follow-
ing specific goals: (1) provide sensitivity analyses of the outputs to
uncertainties in the inputs and assumptions, establishing procedures
for future assessment efforts; (2) identify gaps in functionality within
the tools, leading to the identification of high-priority areas for
further development; (3) assess confidence in the evaluation of
various analysis scenarios such as oxides of nitrogen (NOx) stringency
and future aircraft technologies; and (4) continue to contribute to the
development of external understanding of the FAA Toolsuite cap-
abilities. A critical aspect of a comprehensive UQ effort is the ability to
make the behavior of a tool both transparent and comprehensible to
decision makers while incorporating a variety of uncertainties in the
tool. To ensure this, the overall UQ process for the Environmental
Toolsuite includes tasks related to expert review, verification, valida-
tion, capability demonstration, and parametric uncertainty/sensitivity
analysis [17]. We focus here on the UQ challenges related to enabling
parametric uncertainty and sensitivity analyses.

The scale and complexity of the problem make UQ for this
toolset a daunting task that challenges state-of-the-art in UQ
methods. Many of the component computational models have
long run times. There is a large amount of data even for a single
deterministic analysis (e.g., an analysis of one year involves over
two million flight operations with 350 aircraft types). Several of
the component computational models are built on legacy tools
that were designed with a firmly deterministic mindset; thus,
there are few opportunities for intrusive UQ methods. And while
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there is a recognition of a need to quantify and account for
uncertainties, formal characterizations of parameter uncertainties
(e.g., via probabilistic distributions) are not typically available for
any of the component models.

In this paper, we present methodology and results for UQ of the
Aviation Environmental Design Tool (AEDT), one component of the
overall Environmental Toolsuite, but in itself a complex system
model embodying all of these challenges. Section 2 provides
background on AEDT and its constituent models. Section 3
describes the methods developed to achieve UQ of AEDT, including
development of a tool that is “UQ-enabled”; establishing a process
to quantify parameter uncertainties via data, documentation and
expert opinion; creating certified surrogate models to accelerate
run-times while maintaining confidence in results; and executing
a range of mathematical techniques such as uncertainty propaga-
tion and sensitivity analyses. Section 4 presents UQ results and
Section 5 discusses overall findings. Finally, Section 6 discusses
conclusions.

2. Aviation Environmental Toolsuite

In this section we first describe the Aviation Environmental
Toolsuite and the relationships among its components. We then
provide background on AEDT.

2.1. Overview of Aviation Environmental Toolsuite

The Environmental Toolsuite, which is depicted in Fig. 1, has
three main functional components: the Environmental Design
Space (EDS), which estimates source noise, exhaust emissions,
performance and economic parameters for future aircraft designs
under different technological, operational, policy and market
scenarios; the Aviation Environmental Design Tool (AEDT), which

takes as input detailed fleet descriptions and flight schedules,
produces estimates of noise, fuel burn and emissions at global,
regional, and local levels; and the Aviation environmental Portfolio
Management Tool (APMT), which provides an economic model of
the aviation industry and performs comprehensive environmental
impacts analyses following inputs from AEDT and EDS. Evaluating
a scenario with the Toolsuite consists of an integrated analysis of
EDS, AEDT, and APMT. The analysis requires the definition of
aircraft properties, such as weight, thrust specific fuel consump-
tion, and drag coefficients that define an AEDT aircraft. Economic
and market scenarios in APMT Economics are required in the
analysis to provide fleet composition and flight route information
to AEDT to determine which aircraft to fly and where to fly them.
Once AEDT simulates the operation of the fleet, noise and emission
estimates from AEDT are passed to APMT impacts, where the
information is used to estimate quantities such as global tempera-
ture change and the number of people exposed to certain decibel
levels around airports.

In this paper, we focus on UQ of the AEDT system component.
Similar approaches to creating UQ-enabled tools are required for the
other components of the system. The actual UQ tasks, such as
uncertainty analysis, can be integrated at the Toolsuite level follow-
ing the approach of Amaral et al. [3] once the individual component
level analyses have been completed. We also note here that more
complex evaluation scenarios within AEDT, which could involve
more airports and larger datasets, can be assembled from airport
or regional level analyses via the approach of Amaral et al. [3].

2.2. AEDT

AEDT consists of an integrated set of common models and
databases used for conducting noise, emissions, and fuel burn
analyses on a local (analyzed at the flight level), national, regional,
and global scale. A typical forward run of AEDT involves simulation
of a “representative day” of operations, which involves analyzing
approximately 105 individual aircraft operations. This translates
into hours of CPU time for a global analysis, and involves proces-
sing gigabytes of data.

AEDT is a completely redesigned, integrated tool, building upon
the requirements of the Integrated Noise Model (INM) [6], the
Emissions and Dispersion Modeling System (EDMS) [12], the Noise
Integrated Routing System (NIRS) [35], the Model for Assessing
Global Exposure from Noise of Transport Airplanes (MAGENTA)
and the System for assessing Aviation0s Global Emissions (SAGE) [24].
AEDT is an integrated model that is approved by the FAA to be used
to conduct environmental analysis for FAA federal actions and NEPA
analyses. In addition, it is used by the FAA to conduct analysis to help
inform policy decisions. The tool is used to dynamically model
aircraft performance in space and time, using system data and user
inputs, to produce fuel burn, emissions and noise estimates. Inter-
dependencies among fuel burn, emissions, and noise can be studiedFig. 1. Aviation Environmental Toolsuite.

Fig. 2. System structure of AEDT2a. Figure from “Aviation Environmental Design Tool (AEDT) 2a User Guide” [16].
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by AEDT from a single flight at an airport to scenarios at the regional,
national, and global levels [16].

The structure of AEDT is shown in Fig. 2. The analysis relies
upon two large databases: the Airports Database, which contains
specific information about each airport analyzed (e.g., information
about airport flight patterns and runway parameters, average
monthly values for airport relative humidity, pressure and tem-
perature, diurnal and seasonal variation of the local mixing height
for pollutant atmospheric mixing, etc.) and the Fleet Database,
which contains information associated with aircraft airframe and
engine characteristics. These databases embody an enormous
number of AEDT input parameters, all of which are potentially
uncertain. In this paper, we present UQ results for the AEDT Alpha
version, a pre-release version of the tool. However, the tool
structure and underlying models are very similar to the released
AEDT 2a version [16].

3. Uncertainty quantification methodology

This section presents the methods developed to achieve UQ of
AEDT. We first provide background on UQ for complex systems.
We then discuss the modeling and tool development considera-
tions needed to build a tool that is UQ-enabled. Following that, we
describe the mathematical UQ methodologies that contribute to
achieving our UQ objectives in providing sensitivity analyses,
identifying high-priority areas for further development, and asses-
sing confidence in scenario analyses.

3.1. Uncertainty quantification background

Uncertainty quantification is a field that has received a lot of
recent attention. State-of-the-art structure-exploiting methods for
uncertainty analysis such as polynomial chaos expansions (PCE)
[37,30], stochastic collocation [4], and reduced-order modeling
techniques [7] have been developed. However, these methods are
either intrusive (projection-based reduced models) or build on
underlying smoothness of the models (PCE, stochastic collocation),
and can thus not be applied to tools such as AEDT that contain
black-box models and legacy codes. State-of-the-art sensitivity
analysis methods, such as global sensitivity analysis [32] have
been applied to complex application cases such as nuclear waste
repositories [19], ice sheet modeling [5], and for the design of
nuclear turbosets [38]. In these applications, many challenges to
perform sensitivity analysis exist, such as computational expense
and the large number of desired scenarios to be analyzed.
Techniques such as surrogate modeling, surrogate sensitivity
analysis procedures, and sample reuse have been employed to
help overcome these challenges. In general, developing a UQ
enabled tool such as AEDT requires overcoming these same
challenges, as well as additional challenges related to data storage
requirements, the black-box nature of the models, and the
required integration of analyses from many components. Our
contribution is in bringing existing methods together in a way
that enables UQ at the large scale for such real world tools.

3.2. Uncertainty quantification process: building a tool that
is UQ-enabled

Creating a toolset of the complexity of AEDT encompasses
significant challenges in modeling, data management, software
development, and user interfaces. Carrying out UQ concurrently
with the tool development is essential for guiding allocation of
development resources and for providing support to the tool
validation and verification process. The overall process is pre-
sented in Fig. 3.

3.2.1. Modeling
Modeling considerations for UQ must address the question of

computational cost, as well as appropriate probabilistic characteriza-
tions of uncertain model parameters andmodel inputs. Computational
cost becomes of significant concern in the UQ-enabled tool, since most
UQ analysis methods require many simulation runs (e.g., a Monte
Carlo simulation to propagate input uncertainties may require many
thousands of analysis runs). A detailed component model that is
suitable for a single analysis may be inappropriate for use in the UQ
setting, since run times can quickly become prohibitive even when
parallel computations are employed.

To address this challenge, we use surrogate models—simplified
approximate models that are fast to execute but retain the essential
features of the system input–output behavior. In general, surrogate
models can take many forms: data-fit models (e.g., response
surfaces and Kriging models), hierarchical models (e.g., simplified
physics models or coarse discretizations), or reduced-order models
(e.g., projection-based proper orthogonal decomposition models).
Data-fit surrogate approaches are most appropriate in the case that
the model is a black box with unknown and/or unexploitable
structure, although these techniques cannot deal with high-
dimensional parameter spaces, as is the case for AEDT [18]. If the
problem structure admits a projection-based approach, as is often
the case for systems described by partial differential equations, then
a reduced-order model can provide dramatic speedups for UQ
sampling while retaining high levels of accuracy in estimated
statistics [7]. In the case of AEDT, we can exploit model structure
to build a hierarchical surrogate model that estimates outputs based
on sampling a small subset of flight operations from the “repre-
sentative day” used in a typical AEDT analysis run [1]. As described
in detail in Allaire and Willcox [1], this approach yields significant
speedups in computational simulation time and also provides
quantified confidence intervals on the statistics estimated using
the surrogate model.

3.2.2. Data management
As already shown in Fig. 2, a single AEDT analysis run involves

managing a large amount of data, both in terms of interacting with
large input databases and in terms of the analysis data generated.
Both the software implementation and the UQ task formulation
must be architected carefully to make the data management task
tractable in the UQ setting. We achieve an efficient scalable
implementation via a distributed processing configuration that
permits flexibility in database management. The databases can
reside on the AEDT client itself, or on a separate database server.
With regard to the UQ task formulation, our UQ approach
emphasizes the importance of conducting UQ analyses with a
particular goal in mind. By this, we mean that it is not practical to
assess the effects of uncertainty in every AEDT input parameter
with respect to every AEDT output parameter; nor is it useful,
since an assessment of the uncertainties in AEDT should relate to a
particular analysis context. Rather, we focus on a specific set of
scenarios and use cases. Through these scenarios we define
quantities of interest, often integrated quantities (e.g., total fuel

Fig. 3. Uncertainty quantification process.
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burn or total emissions for a given airport). In this way, the
amount of output data for a given UQ analysis becomes tractable,
and our conclusions from that UQ analysis relate directly to the
fidelity of the tool in a particular specified context.

3.2.3. Verification and validation
Verification and validation efforts are essential to the confirma-

tion of a tool0s functionality and credibility for conducting the
analyses for which it was designed. UQ tasks of parametric
uncertainty and sensitivity analysis provide critical support for
identifying gaps in functionality as part of the verification process,
as well as results that can be compared with gold standard data as
part of the validation effort.

3.2.4. Characterizing uncertainty
Quantification of input uncertainties is a critical step in the

overall uncertainty quantification process. However, often only
limited information, which may be in the form of historical data or
expert opinion, exists for a given input. We use the Principle of
Maximum Entropy to estimate probability distributions describing
input uncertainties [22]. These maximum-entropy distributions
are consistent with known constraints arising from the available
information, but are maximally noncommittal, in an information
theory sense, to information we do not have pertaining to a
given input.

The entropy we wish to maximize is defined as

HðXÞ ¼ � ∑
n

i ¼ 1
PXðxiÞlog PXðxiÞ; ð1Þ

for the case of discrete random variables, where X is some discrete
random variable, PX ðxiÞ is the probability that X ¼ xi, and there are
n possible values x can take. For the continuous case, the entropy is
defined as

hðXÞ ¼ �
Z
X

pXðxÞlog pXðxÞ dx; ð2Þ

where now X is some continuous random variable, pX(x) is the
probability density function of X, and X is the support of pX(x). The
information we may have regarding a given factor typically
consists of bounds for the input and/or moments (e.g., mean and
variance). This information is used to constrain the set of possible
probability distributions in a formal entropy maximization opti-
mization problem [11]. Distributions that result from typical
available information are a discrete uniform distribution, if our
information consists only of a set of discrete values; a continuous
uniform distribution, if our information consists of upper and
lower bounds for the input; a Gaussian distribution, if we have
information regarding only the first two moments of the input;
and a beta distribution, if we have information regarding the first
two moments as well as bounds for the input.

3.3. Uncertainty and sensitivity analysis

Uncertainty analysis encompasses the task of propagating
uncertainty associated with inputs to a tool to the outputs of the
tool [8]. Typically when performing uncertainty analysis for
decision-making, statistical quantities of interest, such as the
mean and variance of a given output are reported. Consider
a general model y¼ f ðxÞ, where x¼ ½x1; x2;…; xk�T is a vector of
k inputs to the model. If the inputs are random variables with
associated probability distributions, then the mean and variance of
the model output are given as

E½Y � ¼
Z
X

pXðxÞf ðxÞ dx; ð3Þ

varðYÞ ¼
Z
X

pXðxÞf ðxÞ2dx�
Z
X

pXðxÞf ðxÞ dx
� �2

; ð4Þ

where pXðxÞ is the joint probability density function of the random
inputs X and X is the support of the joint density pXðxÞ. By the law
of large numbers we can estimate the mean and variance of the
model output using Monte Carlo simulation as

E½Y � � yN ¼ 1
N

∑
N

m ¼ 1
f ðxmÞ; ð5Þ

varðYÞ � 1
N�1

∑
N

m ¼ 1
ðf ðxmÞ�yNÞ2; ð6Þ

where N is the number of model evaluations in the simulation,
yN is the sample mean of the output y using the N model
evaluations, and xm ¼ ½xm1 ; xm2 ;…; xmk �T denotes the mth sample
realization of the random vector X.

Sensitivity analyses are conducted to determine the key inputs
that contribute to output variability. Quantification of system
sensitivities lends understanding of which factors contribute to
uncertainty in the outcome of a particular scenario analysis. For
example, sensitivity analysis reveals which modeling assumptions,
uncertain model inputs and/or uncertain scenario parameters are
most important. In addition to supporting better decision-making
through an understanding of uncertainties, sensitivity analysis is
critical for directing future research efforts aimed at reducing
output variability. This is particularly important in situations
where the variability is so large that model results are useless
for supporting decision-making (e.g., when the difference between
the outcomes of two policy alternatives is not statistically sig-
nificant due to large uncertainty). The recommended method for
the apportionment of output variance across model factors is
global sensitivity analysis [32], which is a quantitatively rigorous
method for determining key contributors to output variability [9].
For models with a large number of inputs, such as AEDT, the
Monte Carlo based Sobol0 method [20] is the most appropriate
approach for conducting a global sensitivity analysis.

Variance-based global sensitivity analysis is based on the fact
that the variance of the generic random model output Y can be
decomposed according to varðYÞ ¼ E½varðY jXiÞ�þvarðE½YjXi�Þ, for
any Xi, where iAf1;…; kg. Global sensitivity indices of Y may be
written as

Si ¼
varðE½Y jXi�Þ

varðYÞ ; ð7Þ

τi ¼ 1�varðE½Y jXic �Þ
varðYÞ ; ð8Þ

where Si is the main effect sensitivity index of the random input Xi,
τi is the total effect sensitivity index of Xi, and Xi

c denotes all
random inputs except Xi. The main effect sensitivity indices
represent the expected reduction in output variance that would
occur if a given factor was to be known precisely. These indices can
be used to direct resource allocation aimed at reducing output
variance. The total effect sensitivity indices represent the expected
amount of output variance that is attributable to a given factor and
all interactions in which that factor is involved. These indices can
be used to determine which factors may be fixed to some value of
their domain without significantly impacting the output.

Following Sobol0 [34] and Homma and Saltelli [20], the main
effect sensitivity indices can be written as

Si ¼
R
X

R
Xi
pXðxÞf ðxÞpVðvÞpXi

0 ðxi0Þf ðv; x0iÞ dx dx0i�E½Y �2
varðYÞ ; ð9Þ

where v¼ ðx1; x2;…; xi�1; xiþ1;…; xkÞ and X0
i represents a second

independent identically distributed version of the input Xi.
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Similarly, the total effect sensitivity indices can be written as

τi ¼ 1�
R
X

R
V
pXðxÞf ðxÞpV0 ðv0ÞpXi

ðxiÞf ðv0; xiÞ dx dv�E½Y �2
varðYÞ : ð10Þ

The sensitivity indices defined by Eqs. (9) and (10) can be
computed using Monte Carlo simulation to estimate the integrals.

The AEDT system analyzed here has millions of inputs. Obtain-
ing main and total effect sensitivity indices for each input is a
computationally intractable task and would also overwhelm the
analysis with data containing little useful information. From a
practical standpoint, we are more interested in determining the
sensitivity of model outputs to groups of inputs of interest. For
example, while each aircraft operation could in theory have an
uncertain parameter that varies independently, it is practically
more useful for us to assess the impact of uncertainty in the
parameter over aircraft operations as a group. For example, rather
than considering uncertainty due the reference emissions index
specific to each engine on each operation (which would result in
� 7:5 million uncertain parameters to be analyzed), we might
consider uncertainty due to the entire group of parameters
corresponding to reference emissions indices over all operations
of a given aircraft type. Estimating sensitivity indices of groups of
inputs has been discussed in Sobol0 [34], Saltelli et al. [32], Allaire
and Willcox [1]. Following Sobol0 [34], consider an arbitrary group
of m inputs for which we would like to estimate the main and total
effect sensitivities. Let G ¼ fg1;…; gmg, where 1rg1o⋯ogmrk
and giAN for i¼ 1;2;…;m, X ¼ f1;2;…; kg, and Gc ¼ X \G . Also, let
XX ¼ ðX1;…;XkÞ ¼X, XG ¼ ðXg1 ;…;Xgm Þ, and XGc

¼ ðXl1 ;…;Xlj Þ,
where mþ j¼ k, l1;…; ljAGc , 1r l1o⋯o ljrk, and liAN for
i¼ 1;2;…; j. Then we may write the main effect index, SG , of the
group of inputs XG as

SG ¼
R
X

R
G
pXðxÞf ðxÞpXGc

ðxGc
ÞpX0

G
ðx0

G Þf ðxGc
; x0

G Þ dx dx0
G�E½Y�2

varðYÞ ; ð11Þ

where G is the support set of the joint density pXG
ðxG Þ. Similarly,

we may write the total effect sensitivity index, τG , of the group of
inputs xG as

τG ¼ 1�
R
X

R
Gc
pXðxÞf ðxÞpx0Gc ðx

0
Gc
ÞpXG

ðxG Þf ðx0
Gc
; xG Þ dx dxGc

�E½Y�2

varðYÞ
ð12Þ

The group sensitivity indices defined by Eqs. (11) and (12) can be
computed using Monte Carlo simulation to estimate the integrals.

4. Uncertainty quantification results

This section first presents the UQ problem setup, then describes
the uncertainty sources considered and their assumed maximum
entropy probability distributions. In some cases we employ
triangular distributions, since often the triangular distribution is
used as a proxy for the beta distribution for policy-level analyses,
given the transparency of the roles of the parameters of the
triangular distribution as compared to those of the beta distribu-
tion [36,23]. We then present AEDT UQ results for several output
quantities of interest. The numerical results presented in this
section are a selection intended to highlight some of the analysis
results; in the next section, we present a comprehensive discus-
sion of the insights gained from the full UQ study. We note here
that if a decision-maker wishes to study the impact of different
input distributions on a particular scenario, a sample reuse
strategy developed in Allaire and Willcox [2] can be incorporated
into the UQ process, which does not require further tool evaluations.
Here, however, we focus on the maximum entropy distributions
determined by the available information regarding the inputs.

4.1. Problem setup

Due to the computational requirements of the UQ analysis,
surrogate models were required. A single day of operations from
October 18th, 2006 at John F. Kennedy Airport (JFK), Hartsfield–
Jackson Atlanta International Airport (ATL), and Teterboro, Airport
(TEB) was used as a surrogate model to approximately represent
a year0s worth of flights at each airport. The selection of these
three airports was made to compare the possible differences in UQ
results for emissions and fuel burn that could be caused by
different aircraft fleet mixes. From previous UQ studies on indivi-
dual components of AEDT it was determined that the sensitivity of
certain input factors can vary by aircraft type. JFK was chosen
because it is a large international hub airport, comprising 1145
total operations (567 departures and 578 arrivals) on the day
analyzed, and utilizing a wide mix of narrow-body, wide-body, and
regional-jet aircraft types. The ATL study comprises 2650 opera-
tions (1333 departures and 1317 arrivals). ATL is a hub airport for
Delta Airlines and Airtran Airways in which the 2006 fleets for
these airlines consisted of a large mix of Boeing aircraft types. The
mix of Boeing aircraft types and other non-Boeing aircraft types
can affect how thrust specific fuel consumption factors are ranked.
The TEB study comprises 497 operations (246 departures and 251
arrivals) and was chosen because it is a commercial airport
dominated by private jets and general aviation which utilize
different input factors than jet aircraft when calculating aircraft
performance.

A single airport was utilized in conducting the noise analysis
which consisted of a single day of operations at JFK. A single
airport was modeled due to the more intensive computational run
time required for conducting a noise analysis versus conducting an
emissions and fuel consumption analysis. The computational run
time differences for the noise analysis are attributed to the use of
individual aircraft trajectories for each aircraft operation and noise
receptor grid points. The emissions and fuel burn analysis models
flights as if they fly straight in and straight out trajectories with no
geospatial importance of where the emissions and fuel burn
occurs with exception to altitude. The noise analysis calculates
the noise intensity at each receptor grid point based upon the
geospatial location of the aircraft in reference to each grid point.
The noise intensity for each grid point is adjusted as the aircraft
flies on different segments along its assigned track.

Also, while the emissions and fuel burn analysis used opera-
tions from October 18th, 2006, the noise analyses utilized an
Average Annual Day (AAD) for JFK. The AAD represents an average
days worth of aircraft operations with representative flight trajec-
tories. Throughout an entire year an airport might have tens of
thousands of individual flight tracks. The AAD utilizes a back
boning process that groups flight operations on representative
flight tracks to represent an average day. The AAD of operations at
JFK consisted of 599 departures and 677 arrivals.

4.2. Characterization of uncertainty

AEDT has three core modules that conduct the fuel consump-
tion, emissions and noise calculations. These are the Aircraft
Performance Module (APM), Aircraft Emissions Module (AEM)
and Aircraft Acoustic Module (AAM). The uncertain input para-
meters described in this subsection are binned by high level
groups: Airport Atmospherics; Aircraft Performance; Aircraft
Emissions; and Aircraft Noise. For many of these parameters,
engineering judgement is cited as the source of the probability
distributions listed. These judgements were performed by engi-
neers on the tool development team with substantial experience
in working with the models and their inputs. However, a formal
elicitation process, such as that discussed in Cooke and Goosens
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[10] was not conducted. Such a process is desirable for establishing
the uncertainties associated with the inputs to the tool when
being used in a decision making context. Here, however, we are
focused on the data management and computational challenges of
developing a UQ-enabled tool.

4.2.1. Airport atmospherics
Airport atmospherics parameters are utilized in all three AEDT

modules. Temperature, pressure, and headwind are used to
calculate aircraft performance. Temperature, pressure, and relative
humidity are used to calculate noise and emissions. Average
temperature, pressure, relative humidity and headwind informa-
tion for each airport are stored in the Airports Database and
retrieved for a specific aircraft operation. For UQ purposes,
temperature, pressure and relative humidity data from the Air-
ports Database are assumed to be representative of all tempera-
ture, pressure, and relative humidity values that occur in the
month corresponding to the flight being modeled. An average
headwind value is assumed for all segments of all operations at an
airport. The airport atmospherics input parameters and their
probability distributions are listed in Table 1.

4.2.2. Aircraft performance
The input parameters associated with calculating aircraft per-

formance can be categorized into three categories: flaps, thrust, and
fuel consumption. There are two methodologies implemented in
AEDT to calculate aircraft performance: the Society of Automotive
Engineers Aerospace Information Report 1845 (SAE-AIR-1845) Pro-
cedure for the Calculation of Airplane Noise in the Vicinity of
Airports [31] and Eurocontrol0s Base of Aircraft Data (BADA) [29].
SAE-AIR-1845 estimates the altitude profile, including net corrected
thrust for terminal area operations below 10,000 ft in altitude.
BADA calculates the fuel consumption based on net corrected thrust
output from the SAE-AIR-1845 algorithms. BADA also calculates
aircraft performance based on airframe (versus the use of aircraft
airframe and engine in SAE-AIR-1845), and applied to aircraft
operations greater than 10,000 ft in altitude.

The flap input parameters and probability distributions are
shown in Table 2. These parameters are stored in AEDT0s Fleet
Database and retrieved for computations. The assumptions asso-
ciated with these parameters are specific to terminal area opera-
tions. These data are empirically derived from proprietary
information provided by aircraft manufacturers.

The thrust input parameters and their associated probability
distributions are listed in Table 3. The thrust input parameters are

stored in AEDT0s Fleet Database and are retrieved for a specific
aircraft operation. The assumptions associated with these para-
meters are representative of the aircraft engine conditions that
determine the power required at particular operating modes such
as take-off or arrival. These data are empirically derived from
proprietary information provided by aircraft manufacturers.
Thrust coefficients E, F, Ga, Gb and H are input parameters used
for jet aircraft operations; the efficiency and power parameters are
used for propeller aircraft operations. The weight parameter

Table 1
Inputs and distribution parameters for airport atmospherics. Each distribution is
triangular and the distribution minimum and maximum values are relative to the
nominal values in the airport database.

Input Distribution
min, max

Explanation of
distribution

Source

Airport 7 10% Diurnal Engineering
temperature variation judgment
Airport pressure 7 3% Diurnal variation Engineering
relative to mean judgment
sea level
Average headwind þ100%, Variation of the Engineering
value �125% wind speed vector judgment

applied to the
aircraft during
terminal area
operations

Average relative 715% Diurnal Engineering
humidity variation judgment

Table 2
Inputs and distribution parameters for flap settings for the aircraft performance
module. Each distribution is triangular and the distribution minimum and max-
imum values are relative to the nominal values in the fleet database.

Input Distribution min,
max

Explanation of
distribution

Source

Takeoff 714% Estimation of Engineering
distance variation of judgment
coefficient take off distance
(Flaps Coefficient B) coefficient
Takeoff and 714% Estimation of Engineering
landing calibrated variation of judgment
airspeed coefficient takeoff and
(Flaps landing
Coefficient CD) calibrated

airspeed
coefficient

Drag-over-lift 714% Estimation of Based upon a
ratio drag-over-lift validation analysis
(Flaps ratio which compared
Coefficient R) coefficient R

values in AEDT
to computer
flight data
recorder data

Table 3
Inputs and distribution parameters for thrust settings for the aircraft performance
module. Each distribution is triangular and the distribution minimum and max-
imum values are relative to the nominal values in the fleet database.

Input Distribution min,
max

Explanation of
distribution

Source

Corrected net 7 15% Variation of Validation
thrust per engine takeoff thrust analysis
coefficient using computer
(Coefficient E) flight data

recorder data
Speed adjustment 7 15% Variation of Engineering
coefficient speed adjustment judgment
(Coefficient F) coefficient
Altitude adjustment 72.5% Variation of Engineering
coefficient altitude adjustment judgment
(Coefficient Ga) coefficient
Altitude-squared 72.5% Variation of Engineering
adjustment altitude squared judgment
coefficient adjustment
(Coefficient Gb) coefficient
Temperature 72% Variation of Engineering
adjustment temperature judgment
coefficient coefficient
(Coefficient H)
Propeller 710% Variation of Engineering
efficiency ratio propeller judgment

efficiency ratio
Net propulsive 710% Variation of net Engineering
power per engine propulsive power judgment
Aircraft weight 710% Variation of Engineering
during current aircraft takeoff judgment
operation weight
(starting weight)
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represents the weight of the aircraft. This value is determined by
the distance between the origin and destination airports referred
to as the “stage length” of the aircraft operation.

Fuel consumption is calculated in AEDT by determining the
required thrust for a flight operation and assigning the appropriate
thrust specific fuel consumption (TSFC) coefficients. To estimate
fuel consumption, the SAE-AIR-1845 methodology calculates the
thrust that corresponds to specific TSFC coefficients for an operat-
ing mode such as departure or approach. The TSFC input para-
meters and their probability distributions are listed in Table 4. The
TSFC input parameters are stored in AEDT0s Fleet Database and are
retrieved for a specific aircraft operation.

4.2.3. Aircraft emissions
Aircraft emissions are calculated by AEDT0s Aviation Emissions

Module (AEM) using the fuel consumption computed by the APM
and the engine-specific emissions index stored in the Fleet Database.
The input parameters and their probability distributions are listed in
Table 5. Aircraft emission parameters are specific to aircraft operation
mode, namely take-off, climb-out, approach and idle. The data are
derived empirically from aircraft certification tests required by the
International Civil Aviation Authority (ICAO). ICAO maintains a
database of the certification data which includes data for fuel flow,
carbon monoxide (CO), hydrocarbons (HCs), oxides of nitrogen (NOx),
and smoke number (SN) (used for determining non-volatile particu-
late matter) measured at the four landing and take-off cycle (LTO)
power settings noted above.

The use of LTO cycle values of the ICAO emission indices
calculated at sea level static conditions introduces uncertainty in
emissions inventory calculations because emissions must be

calculated with the Boeing Fuel Flow Method 2 (BFFM2) [13] at
non-reference conditions and power settings other than the four
ICAO settings. The ICAO Committee on Aviation Environmental
Protection (CAEP) Working Group 3 has shown that BFFM2
computations of NOx, CO, and HCs at non-reference conditions
and non-LTO-cycle power settings have an uncertainty of 10% [21].
Also, the published literature indicates that engine-to-engine
emission index variability can be estimated to be 16% for NOx,
23% for CO, and 54% for HC at the 90% confidence interval for a
representative sample of new, uninstalled engines [25]. The
emission indices in the ICAO emissions database do not include
changes in emission characteristics due to engine deterioration
over time. The effects of engine deterioration on NOx emissions
are estimated to be �1% to þ4% [26]. Engine deterioration effects
are applied to the final input distribution for NOx. These effects
were not applied to the final input distributions for CO and HC.

4.2.4. Aircraft noise
The probability distributions for each input parameter for calcu-

lating the aircraft noise are listed in Table 6. Aircraft noise parameters
are located within AEDT0s Fleet Database and are retrieved for a
specific aircraft operation on the geospatial location of the aircraft in
reference to a grid point. Noise-power-distance (NPD) curves are a
function of engine power and distance from a particular grid point
and are developed according to SAE-AIR-1845. They are used to
determine noise level values by interpolating and/or extrapolating by
the net corrected thrust and slant distance between an aircraft and
grid point. The interpolation/extrapolation process is a piecewise
linear one between the engine power setting and the base-10

Table 4
Inputs and distribution parameters for thrust specific fuel consumption settings for
the aircraft performance module. Each distribution is triangular and the distribu-
tion minimum and maximum values are relative to the nominal values in the fleet
database.

Input Distribution min,
max

Explanation of
distribution

Source

Thrust specific 710% Estimation of Engineering
fuel consumption variation of TSFC judgment
Coeff1 (Boeing)
-Constant
Thrust specific 710% Estimation of Engineering
fuel consumption variation of TSFC judgment
Coeff2 (Boeing)
-Mach
Thrust specific 710% Estimation of Engineering
fuel consumption variation of TSFC judgment
Coeff3 (Boeing)
-Altitude
Thrust specific 710% Estimation of Engineering
fuel consumption variation of TSFC judgment
Coeff4 (Boeing)
-Thrust
1st thrust specific 710% Estimation of Engineering
fuel consumption variation of TSFC judgment
coefficient
(TSFC BADA 1)
2nd thrust specific 710% Estimation of Engineering
fuel consumption variation of TSFC judgment
coefficient
(TSFC BADA 2)
1st descent fuel 710% Estimation of Engineering
flow coefficient variation of TSFC judgment
(TSFC BADA 3)
2nd descent fuel 710% Estimation of Engineering
flow coefficient variation of TSFC judgment
(TSFC BADA 4)

Table 5
Inputs and distribution parameters for emission indices for the aircraft emissions
module. Each distribution is triangular and the distribution minimum and max-
imum values are relative to the nominal values in the fleet database.

Input Distribution
min, max

Explanation of
distribution

Source

ICAO reference 75% Variation of ICAO Engineering
fuel flow fuel flow judgment
ICAO reference 726% Variation of ICAO Validation analysis
emissions index carbon monoxide while establishing
for CO (CO EI) emissions indices ICAO certification

procedure
ICAO reference 755% Variation of ICAO Validation analysis
emissions index hydrocarbon while establishing
for HC (HC EI) emissions indices ICAO certification

procedure
ICAO reference 724% Variation of ICAO Validation analysis
emissions index nitrogen oxides while establishing
for NOx (NOx EI) emissions indices ICAO certification

procedure
ICAO reference 73 Estimation of Validation analysis
smoke number (SN) variation of ICAO while establishing

smoke number ICAO certification
procedure

Table 6
Inputs and distribution parameters for the aircraft noise module. Each distribution
is triangular and the distribution minimum and maximum values are relative to the
nominal values in the fleet database.

Input Distribution min, max Explanation of
distribution

Source

Noise-power 71.5 dB Variation of noise Noise certification
distance (NPD) certification data guidelines
curves
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logarithm of distance. Noise certification values are reported within
an error of þ/� 1.5 decibels (dB) [14].

4.3. UQ results: fuel burn and emissions

Fig. 4 shows the output histograms of fuel burn for JFK, ATL and
TEB, respectively. Table 7 lists the mean, standard deviation, and
coefficient of variation for the fuel burn distributions in each case.
Even accounting for the many uncertain input parameters
described in the previous section, AEDT estimates of fuel burn
have relatively low uncertainty, with standard deviations of less
than 2% of the mean values for all airports analyzed. Fig. 5 shows
the total sensitivity indices (TSIs) for those input parameters that
contributed the most to the fuel burn output variance for each
airport analyzed. The biggest contributor to the variance for fuel
burn across all airports is aircraft weight. The ranking of the TSI
values for the other parameters vary for each of the airports
analyzed. The TSFC BADA 1 coefficient was the second highest
contributor to the variance for JFK and TEB; however, for ATL it
was the fifth highest contributor. This difference is due to fleet mix
differences between the three airports. The fleet mix for JFK
consists of many aircraft that utilized the BADA TSFC coefficients.

ATL has a large portion of Boeing aircraft within its fleet, which
utilize the Terminal TSFC coefficients.

Table 7 also shows the mean, standard deviation, and coeffi-
cient of variation for the distributions of NOx, CO, HC, and
particulate matter (PM) emissions. It can be seen that uncertainty
in emission estimates is generally higher than for fuel burn
estimates. This is because emission estimates are subject to the
additional uncertainty stemming from the emissions indices. HC
emissions show the largest coefficient of variation results. Fig. 6
shows the TSI values for the most significant contributors to
output variance in HC emissions. We see that uncertainty in HC
emissions is dominated by the HC Emissions Index (EI). For JFK,
temperature and pressure also contribute a small amount to the
HC emissions variance. Fig. 7 shows sensitivity indices for PM
emissions. In this case, there is not a single dominating input
parameter. Aircraft weight is important, as there are various
coefficients in the models of aircraft and engine performance.

4.4. UQ results: noise

We present noise uncertainty analysis and sensitivity analysis
results for JFK airport only. The output of interest in this case is the
Sound Exposure Level (SEL), which is a measure of the total noise
energy produced by a noise event. The noise analysis was
conducted using an 81-point evenly spaced receptor grid that

Fig. 4. Fuel burn output distributions for JFK (upper left), ATL (upper right), and TEB (lower).

Table 7
Fuel burn and emissions statistics for JFK, ATL and TEB.

Output Airport JFK ATL TEB

Fuel burn Mean (Mg) 1005 1081 83
Standard deviation (Mg) 9 12 1.5
Coefficient of variation (%) 0.9 1.2 1.8

NOx Mean (kg) 14,116 14,777 883
Standard deviation (kg) 362 470 41
Coefficient of variation (%) 2.6 3.2 4.6

CO Mean (kg) 12,368 12,513 1720
Standard deviation (kg) 316 366 52
Coefficient of variation (%) 2.6 2.9 3.0

HC Mean (kg) 1655 1838 653
Standard deviation (kg) 77 122 74
Coefficient of variation (%) 4.6 6.6 11.3

PM Mean (kg) 304 397 37
Standard deviation (kg) 5.6 9.0 1.2
Coefficient of variation (%) 1.8 2.3 3.3

Fig. 5. Fuel burn TSI values for JFK, ATL and TEB.
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covers a 20�20 nautical mile area around JFK airport. Fig. 8
depicts a noise contour plot of the mean SEL values resulting from
the uncertainty analysis, conducted via Monte Carlo simulation.
Sensitivity analysis computes TSI values for each grid point. The
numerical values of the sensitivity indices are not shown here due
to the large number of grid points. Fig. 9 presents the total
sensitivity indices for a grid point near JFK (point A in Fig. 8)
and a grid point farther away from JFK (point B in Fig. 8). The
sensitivity analysis for these grid points is typical for all grid points
and reveals that the uncertainty surrounding the noise-power-
distance (NPD) curves is the most significant contributor to SEL
variance. TSI values for NPD curves were typically above 0.95 for
each grid point analyzed. Thrust Coefficient E was the second
highest contributor to the output variance, with TSI values around
0.05 at each grid point. The analysis also showed small contribu-
tions ðo1%Þ to SEL variance from aircraft weight and atmospheric
temperature parameters.

5. Discussion

The sensitivity and uncertainty analyses conducted for AEDT
have identified input parameters that contribute the most to
output variance and uncertainty for emissions, fuel burn, and
noise. Even though the scope of these analyses was limited to the
use of the AEDT Alpha version, the results are generally applicable
to more advanced versions of AEDT, because the core algorithms
and associated assumptions are carried forward in those releases
of AEDT. In total, 29 individual input parameters contributed
significantly to the output variances across all emissions and noise
output metrics. Only 12 of those input parameters are significant
contributors to the output variances of all the emission metrics at
the airport level within the terminal area. Only two parameters
contributed to the output variance for noise. While the discussion

below focuses on the technical details of AEDT models, it demon-
strates more generally how the UQ analyses support the specific
goals described in Section 1. In particular, the uncertainty analysis
and sensitivity analysis results highlight the most important
assumptions within the models, identify gaps in the models, and
indicate important areas for future tool development.

5.1. Emissions Indices (EIs)

The ICAO engine EI uncertainties were found to be the main
contributors to output variance for NOx, HC and CO emissions. As
shown in Table 5, the distributions assumed for the EIs were
triangular with upper/lower bounds of 24% of the mean value for
NOx, 26% for CO, and 55% for HC. These EI uncertainties include
engine-to-engine variations as well as the uncertainty in Boeing
Fuel Flow Method 2 (BFFM2) calculations. These values were
derived from published data based on the fuel venting and exhaust
emissions requirements associated with the engine certification
process [15]. In the context of engine emissions certification, the
Dp/Foo value represents the mass of any gaseous pollutant emitted
during the LTO cycle divided by an engines rated thrust output.
The minimum requirement for engine certification is that a single
engine is tested three times; the mean Dp/Foo values are calcu-
lated from those three tests. To determine if the engine type meets
the certification emission requirements, the mean Dp/Foo values
are adjusted upward by 16% for NOx, 23% for CO, and 54% for HC to
calculate the characteristic Dp/Foo. This value is then compared to
certification emission standards. The characteristic Dp/Foo value
accounts for the uncertainty associated with engine-to-engine EI
variability; if the characteristic Dp/Foo for the engine does not
meet the certification emission standards then additional engines
of that same model number are tested to reduce the overall
uncertainty in calculating the characteristic Dp/Foo values. These
adjustment factors are based on certification-like studies that
were conducted in the 1970s [25]. They may be considered
conservative due to how modern aircraft engines have evolved.
Also, all EI and SN values have four certification points for take-off
(100% power), climb-out (85% power), approach (30% power), and
idle (7% power). For this analysis, the same probability distribution
was used for each power setting, although in reality the EI
uncertainty associated with each power setting may vary. A better
understanding for which power setting the EI uncertainty is most
important may provide valuable guidance to mitigating the effects
of this uncertainty.

5.2. Aircraft weight

Aircraft weight was found to be a significant contributor to the
output variance for CO2, fuel burn, NOx, and particulate matter.
AEDT determines aircraft weight based upon origin-to-destination
stage length distance. Each aircraft can have multiple stage length
distances based upon range and purpose. Our analysis used a
triangular distribution to represent weight uncertainty, with upper
and lower bounds of 10% of the mean value. Because the aircraft
weight was observed to be such a large contributor to the output
variance of multiple output metrics, this is a valuable area in
which to invest resources to better understand the associated
uncertainties. For example, computational fight recorder data
could be analyzed to better characterize stage length weight and
its variations.

5.3. Terminal and BADA TSFC coefficients

The Terminal and BADA TSFC 1 coefficients are significant
contributors to the output variance of CO2, fuel burn, NOx, and
particulate matter. The Terminal coefficients were developed by

Fig. 6. Hydrocarbon emission TSI Values for JFK, ATL and TEB.

Fig. 7. Particulate matter emission TSI Values for JFK, ATL and TEB.
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the Volpe Center using proprietary aircraft performance models
and computational flight recorder data [33]. The BADA coefficients
are provided by Eurocontrol. The Terminal TSFC coefficients used
in AEDT currently apply to newer Boeing aircraft models, while the
BADA coefficients apply to all other aircraft. The BADA TSFC
1 typically ranked higher than the Terminal TSFC 1 in the
sensitivity analysis; however, this is most likely due to the number

of aircrafts to which these coefficients are assigned. Because the
Terminal and BADA TSFC coefficients are significant contributors to
the output variance of multiple output metrics, further verification
and validation efforts should continue in this area. Past verification
and validation has led to the creation of the Terminal TSFC
coefficients, which replaced BADA coefficients for newer Boeing
aircraft types. The Terminal TSFC coefficients have been shown to
be more accurate in predicting fuel burn, especially during the
departure.

5.4. SAE-AIR-1845 performance coefficients

Thrust Coefficient E (corrected net thrust per engine) is a
significant contributor to the output variance for CO2, fuel burn,
NOx, and particulate matter. This input parameter is also a
contributor to the output variance associated with SEL for noise.
Other SAE-AIR-1845 coefficients are also contributors to the out-
put variance for CO2, fuel burn, NOx, and particulate matter,
including Flaps Coefficient R (drag-over-lift ratio) and Flaps
Coefficient CD (takeoff and landing calibrated airspeed). However,
these input parameters are typically outranked by weight, NOx EI,
and the TSFC coefficients. The range of probabilistic distributions
were mostly determined by the percent reduction in take-off
thrust observed while analyzing computational flight recorder
data. Currently, AEDT does not model reduced thrust take-offs.
However, because Thrust Coefficient E was identified as a key
contributor to the output variance for multiple output metrics, it is

Fig. 8. JFK Sound Exposure Level (SEL) contour plot with two representative grid points highlighted; point A is close to JFK and point B is farther away. The total sensitivity
indices for SEL at these two grid points are presented in Fig. 9.

Fig. 9. Sound exposure level TSI values for grid points A and B in Fig. 8 for JFK.
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suggested that further research efforts be conducted to investigate
the potential impact of AEDT not having this capability.

5.5. NPD curves

The NPD curves are the most significant contributor to the
variability of SEL noise output. Atmospheric parameters, such as
temperature, pressure, and relative humidity, do not significantly
contribute to the output variance. Like the ICAO EI values, which
are based upon the emissions certification process, the current
NPD generation process is unlikely to change. For this analysis,
each point along an NPD curve was varied independently. An
alternate approach would be to shift all of the points along the
NPD curve in unison. Future analysis should determine the
appropriateness of each approach. Items that were not addressed
with this analysis include the variation of type of profile or track.
Since both items affect the location of the aircraft, their variation
(reflecting day-to-day variation at a given airport) would likely
contribute further to SEL variance. In addition, our analysis used
81-points in the receptor grid. Future analyses will assess whether
output variance contributions change when more grid points
closer to the airport are considered.

6. Conclusions and future work

This paper has presented methodology and results for uncer-
tainty quantification of a real-world complex system modeling
tool. The approaches described in the paper overcome the com-
plexities of long run times and massive input/output datasets,
using a combination of surrogate modeling and grouped sensitiv-
ity analysis. Several general conclusions can be drawn from the UQ
effort presented here. First, sensitivity analysis on a black-box code
is a systematic and effective means of identifying high priority
areas for future research as well as insignificant factors that can be
fixed to nominal values. For models with high-dimensional input
factors, the latter is an essential part of managing database and
analysis complexity. Second, surrogate models are essential for
achieving UQ at scale in complex tools. Third, the overall AEDT
development process benefited from conducting UQ concurrently
with the tool development. Developers were able to include in the
toolset the necessary software and database attributes to create a
UQ-enabled tool. In return, the concurrent UQ analysis was able to
identify and feed back analysis limitations, in time to have impact
on the tool development. Although challenging to manage, con-
current development and UQ assessment processes bring signifi-
cant benefit.
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