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Abstract

Two major bottlenecks to the solution of large-scale Bayesian inverse problems are the scaling of
posterior sampling algorithms to high-dimensional parameter spaces and the computational cost
of forward model evaluations. Yet incomplete or noisy data, the state variation and parameter
dependence of the forward model, and correlations in the prior collectively provide useful structure
that can be exploited for dimension reduction in this setting—both in the parameter space of
the inverse problem and in the state space of the forward model. To this end, we show how to
jointly construct low-dimensional subspaces of the parameter space and the state space in order
to accelerate the Bayesian solution of the inverse problem. As a byproduct of state dimension
reduction, we also show how to identify low-dimensional subspaces of the data in problems with
high-dimensional observations. These subspaces enable approximation of the posterior as a product
of two factors: (i) a projection of the posterior onto a low-dimensional parameter subspace, wherein
the original likelihood is replaced by an approximation involving a reduced model; and (ii) the
marginal prior distribution on the high-dimensional complement of the parameter subspace. We
present and compare several strategies for constructing these subspaces using only a limited number
of forward and adjoint model simulations. The resulting posterior approximations can rapidly be
characterized using standard sampling techniques, e.g., Markov chain Monte Carlo. Two numerical
examples demonstrate the accuracy and efficiency of our approach: inversion of an integral equation
in atmospheric remote sensing, where the data dimension is very high; and the inference of a
heterogeneous transmissivity field in a groundwater system, which involves a partial differential
equation forward model with high dimensional state and parameters.

Keywords: Inverse problems, Bayesian inference, dimension reduction, model reduction,
low-rank approximation, Markov chain Monte Carlo

1. Introduction

Inverse problems convert indirect observations into useful characterizations of the parameters
of a physical system. These parameters are related to the observations by a forward model, which
often is expressed as a system of ordinary or partial differential equations (PDEs) or as an integral
equation. Observations are inevitably corrupted by noise, and the unknown model parameters
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may be high-dimensional or infinite-dimensional in principle. Solution of the inverse problem is
thus classically ill-posed: many feasible realizations of the parameters may be consistent with
the data, and small perturbations in the data may lead to large perturbations in unregularized
parameter estimates. Rather than seeking regularized point estimates, the Bayesian approach
[1, 2, 3] casts the inverse solution as the posterior probability distribution of the model parameters
conditioned on data, and introduces regularization in the form of prior information. It thus provides
a means of combining prior knowledge, the data and forward model, and a stochastic description
of measurement and/or model errors; the result is a principled quantification of uncertainty in
parameters and in parameter-dependent predictions. Characterizing the posterior, however, is
in general a computationally challenging task. The workhorses of Bayesian computation in this
context are Markov chain Monte Carlo (MCMC) methods [4, 5, 6], originating with the Metropolis-
Hastings algorithm [7, 8].

A central challenge in the application of MCMC methods to inverse problems is poor scal-
ing of computational effort with parameter dimension and with the size of the forward model.
High-dimensional parameters frequently represent the discretization of a spatial field (e.g., the
permeability field of a porous medium) that is the target of inference. Yet the efficiency of many
standard MCMC methods degrades with parameter dimension [9, 10, 11, 12, 13]; longer mixing
times for MCMC chains then demand more posterior evaluations to estimate posterior expecta-
tions with any given accuracy. Similarly, many forward models of interest have high-dimensional
states—resulting, for instance, from finite-element discretizations of PDEs, where many degrees of
freedom are needed to resolve the relevant physics accurately. The computational expense of each
forward model evaluation scales at least linearly with the dimension of model state (e.g., when
the solution of a linear system is required). Another important but often-neglected computational
expense in MCMC methods is the proposal process: the cost of generating random variables and
calculating the candidate step often scales at least linearly with the parameter dimension.

To overcome these twin challenges—parameter dimension and forward model cost—this paper
proposes a likelihood-informed approach for identifying and exploiting low-dimensional structure
in both the parameter space and the model state space of inverse problems. Our approach inte-
grates and extends two lines of research: the likelihood-informed parameter dimension reduction
of [14, 15] and the data-driven model reduction of [16]. By simultaneously considering the limited
accuracy or influence of the observations, the smoothing properties of the forward model, and
the covariance structure of the prior, the former identifies a low-dimensional likelihood-informed
parameter subspace (LIPS)1 where the influence of the likelihood on the posterior dominates that
of the prior. Given this subspace, one can approximate the full posterior2 as the product of a
low-dimensional posterior on the LIPS and the marginalization of the prior onto the complement
of the LIPS. The latter term can be characterized analytically or with perfectly independent sam-
ples. Evaluation of the posterior density restricted to the LIPS is still computationally expensive,
however, as it involves the full forward model. Our second step accelerates these evaluations by
projecting [18, 19, 20, 21] the forward model—with input parameters restricted to the LIPS—onto
a low-dimensional state subspace. This subspace is called the likelihood-informed state subspace

1[15] and [17] refer to this reduced parameter subspace as the “likelihood-informed subspace” or LIS. Since the
present work introduces low-dimensional subspaces of both the parameter space and state space, we replace ‘LIS’
with the more specific ‘LIPS’ in order to avoid confusion.

2The term “full posterior” refers to the posterior distribution induced by the full forward model defined on the
original parameter space.
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(LISS), as it captures variations in the model state associated with the LIPS-projected posterior.
This model reduction approach extends the data-driven model reduction ideas of [16] by not only
exploiting posterior concentration, but also avoiding consideration of input parameter directions
that ultimately will not be data-informed. Finally, we combine these approximations together: the
reduced-order model resulting from projection onto the LISS is substituted into the product-form
approximation of the posterior described above. The resulting jointly-approximated posterior is
inexpensive to evaluate and to sample, with a computational cost that is independent of the di-
mension of the full model state or the parameters. Indeed, this cost scales only with the dimensions
of the LIPS and the LISS, which are in a sense the intrinsic dimensions of the problem.

As a byproduct of state reduction, we describe new approaches for efficiently handling and
reducing high-dimensional data sets in inverse problems; these approaches are potentially useful in
“big data” settings. While the jointly-approximated posterior achieves excellent accuracy in our
numerical examples, we also discuss how to use it as a proposal distribution in importance sampling
or delayed-acceptance MCMC [22, 23] for the purpose of “exact” sampling—i.e., the computation
of expectations with respect to the full posterior—if desired. To ensure convergence in this setting,
we introduce a special treatment of the tails of the jointly-approximated posterior.

Previous work has also investigated the idea of combining parameter reduction with model re-
duction or other forms of surrogate modeling in order to approximate posterior distributions. One
early effort is [24], which constructs a reduced parameter basis using the truncated Karhunen-Lòeve
(KL) expansion [25, 26] of the prior covariance, and then uses generalized polynomial chaos expan-
sions [27, 28, 29] to build a surrogate of the full model. The same KL-based parameter reduction
technique has also been combined with projection-based model reduction to accelerate posterior
evaluations; examples include [30] and [16]. Similarly, [31] combines a process convolution model
[32] of the parameters with a sparse grid approximation of the forward model. A different approach
in [33] simultaneously identifies reduced subspaces for both the parameters and the state, by solv-
ing a sequence of model-constrained optimization problems penalized by the prior. In general, all
these earlier approaches seek a truncation of the parameter dimension and then accelerate forward
model evaluations over the reduced parameter subspace using surrogates. The smoothness of the
prior plays a crucial role in these approaches, either for avoiding large KL truncation errors or for
promoting convergence of the model-constrained optimization. In practice, this requirement can
impose significant restrictions on the choice of priors. Our approach is fundamentally different in
several respects. First, our posterior approximation is based on capturing the change from the
prior to the posterior within the LIPS, rather than directly truncating the parameter dimension of
the problem. Second, model reduction using the LISS only captures the state variations that are
relevant to the change from prior to posterior; this “localization” strategy is key to the successful
construction of reduced-order models for high-dimensional parameterized systems. Furthermore,
our jointly-approximated posterior is not singular with respect to the full posterior, and can thus
be used to drive exact sampling schemes (e.g., importance sampling as mentioned above).

The rest of this paper is organized as follows. In Section 2, we review the Bayesian formulation
of inverse problems. In Section 3, we introduce the concept of joint posterior approximation using
reduced parameter and state subspaces, then detail various strategies and practical algorithms for
constructing this approximation and for exploring the full posterior. In Section 4, we demonstrate
various aspects of our proposed approach using an atmospheric remote sensing problem, comparing
different strategies for subspace identification and for the reduction of high-dimensional data. In
Section 5, we apply our joint posterior approximation approach to the inference of the transmissivity
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field of a groundwater aquifer. Section 6 offers concluding remarks.

2. Bayesian formulation for inverse problems

We begin by constructing the forward model. Consider a numerical discretization of the system
of interest, described by a nonlinear equation

A(u, x) = 0, (1)

where u ∈ U ⊆ Rm and x ∈ X ⊆ Rn are the m-dimensional state vector and the n-dimensional pa-
rameter vector, respectively. The goal of an inverse problem is to infer the unobservable parameters
x from noisy partial observations of the states u, given by

yobs = C(u, x) + e . (2)

Here C is a discretized observation operator mapping from the states and parameters to the ob-
servables, and e is a random variable representing noise and/or model error, which appear addi-
tively. The system model A(u, x) = 0 and observation model C(u, x) together define a forward
model y = F (x) that maps the unknown parameter to the observable model outputs. We note
that although the forward model defined by (1) and (2) is induced by a stationary problem, the
methodology presented in this paper is also applicable to time-dependent systems.

To formulate the inverse problem in a Bayesian setting, we model the parameter x as a random
variable, endow it with a prior distribution, and then characterize its posterior distribution given
a realization of the data, yobs ∈ Y ⊆ Rd:

π(x|yobs) ∝ L(yobs|x)π0(x). (3)

Here, we assume that all distributions have densities with respect to Lebesgue measure. The poste-
rior density above is the product of two terms: the prior density π0(x), which models knowledge of
the parameters before the data are observed, and the likelihood function L(yobs|x), which describes
the probability distribution of yobs for a given x.

We develop our formulation in the setting of a multivariate Gaussian prior N (µpr,Γpr), where
the covariance matrix Γpr might also be specified by its inverse Γ−1

pr , commonly referred to as the
precision matrix. The additive observational noise is taken to be a zero mean Gaussian distribution,
i.e., e ∼ N (0,Γobs). Given the weighted inner product 〈y1, y2〉Γobs = 〈y1,Γ−1

obsy2〉 and the induced
norm ‖y‖Γobs =

√
〈y, y〉Γobs , we can define a data-misfit function

η(x) = 1
2 ‖F (x)− yobs‖2Γobs

. (4)

The likelihood function is thus proportional to exp (−η(x)). The Gaussian settings used here
can be generalized to non-Gaussian priors, e.g., log-normal distributions, with an appropriate
transformation or change of variables to a Gaussian. Additive but non-Gaussian noise can be
handled similarly. These transformations may introduce additional nonlinearity in the forward
model.

Note that the unknown parameters and the model states are in principle functions of space
and/or time, and that the finite-dimensional representations above are the result of numerical
discretization. If one considers progressively refining the parameter discretization, however, the
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posterior distribution does not have a density with respect to Lebesgue measure at the infinite-
dimensional limit. However, for inverse problems with properly chosen Gaussian priors—e.g., a
covariance operator that is self-adjoint, positive definite, and trace-class—and a forward model
satisfying certain regularity conditions—e.g., appropriately bounded [3] and locally Lipschitz—the
posterior has a density with respect to the prior and yields a full measure at the infinite-dimensional
limit. In this case, Bayes’ rule in (3) is expressed as the Radon-Nikodym derivative of the posterior
with respect to the prior. We refer the readers to [3] and references therein for more details. Since
we aim to approximate the posterior distribution defined by given discretizations of the parame-
ters, a finite-dimensional forward model, and the associated prior, we adopt the finite-dimensional
representation of the posterior as our starting point in this paper. This finite-dimensional posterior
can be derived either from a consistent discretization of an infinite-dimensional inverse problem
or from some other existing numerical models that are not necessarily well-defined in the infinite-
dimensional limit.

3. Posterior approximation via dimension reduction

In this section, our first objective is to reduce the algorithmic complexity of posterior sampling
by identifying a likelihood-informed parameter subspace (LIPS) that captures parameter directions
where the change from prior to posterior is most significant. We will then decompose the posterior
into the product of (i) a low-dimensional distribution, defined on the LIPS, that is analytically
intractable and therefore must be sampled; and (ii) a higher-dimensional but analytically tractable
marginal of the prior distribution on the complement of the LIPS. To accelerate the forward model
evaluations required when sampling the first term of this product decomposition, we will identify
a low-dimensional subspace of the forward model state—the likelihood-informed state subspace
(LISS)—and construct a reduced version of the forward model accordingly. Introducing this re-
duced model into the product decomposition yields the jointly-approximated posterior distribution
described in the introduction. At the end of this section, we will describe and compare various
sampling strategies for constructing the LISS and LIPS, and hence the jointly-approximated poste-
rior. We will also discuss methods for exploring the full posterior distribution, given the preceding
approximations.

3.1. Data-informed parameter reduction
Inverse problems very often involve some combination of a smoothing forward model, limited

or noisy observations, and correlations in the prior. When any of these factors is present, the data
will not equally inform all directions in the parameter space. We may be able to explicitly project
the argument of the likelihood function onto a lower-dimensional subspace of the parameter space
without losing much information. Our objective here is to find an r-dimensional LIPS, denoted by
Xr, to capture the parameter directions where the likelihood is “most informative” relative to the
prior. This notion will be defined more precisely below.

3.1.1. Parameter-reduced posterior
Consider a rank-r projector Πr whose range is the LIPS, i.e., Xr = range(Πr). We approximate

the posterior density (3) as:
π̂(x|yobs) ∝ L (yobs|Πrx)π0(x), (5)

where L (yobs|Πrx) is an approximation to the original likelihood function L (yobs|x). We require
the projector Πr to be orthogonal with respect to the inner product induced by the prior covariance
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〈x1, x2〉Γpr = 〈x1,Γ−1
pr x2〉. This requirement is essential to constructing a tractable product-form

approximation of the posterior.

Definition 3.1 (Parameter space projectors). Suppose the subspace Xr is spanned by a basis
Φr ∈ Rn×r that is orthogonal with respect to the inner product 〈·, ·〉Γpr, i.e., 〈Φr,Φr〉Γpr = Ir, where
Ir is the r-by-r identity matrix. Define the matrix Ξr ∈ Rn×r such that Ξ>r Φr = Ir. Then the
projectors

Πr = ΦrΞ>r and Π⊥ = I −Πr,

are orthogonal with respect to 〈·, ·〉Γpr. Moreover, the (n−r)-dimensional subspace X⊥ = range(Π⊥)
is the orthogonal complement of Xr with respect to 〈·, ·〉Γpr. We can choose a basis Φ⊥ ∈ Rn×(n−r)

such that [Φr,Φ⊥] forms a complete orthogonal system in Rn with respect to 〈·, ·〉Γpr, and thus
the projector Π⊥ can be written as Π⊥ = Φ⊥Ξ>⊥, where Ξ⊥ ∈ Rn×(n−r) is the matrix such that
Ξ>⊥Φ⊥ = I⊥.

Using the projectors defined above, the parameter x can be decomposed as x = Πrx + Π⊥x,
where each projection can be represented as the linear combination of the corresponding basis
vectors. Consider parameters xr and x⊥ that are the weights associated with the bases Φr and
Φ⊥, respectively. Then we can define the following pair of linear transformations between x and
(xr, x⊥):

x = [Φr Φ⊥]
[
xr
x⊥

]
and

[
xr
x⊥

]
= [Ξr Ξ⊥]> x. (6)

Lemma 3.2. Given the decomposition x = Φrxr + Φ⊥x⊥ defined in (6), the prior distribution
can be decomposed into the product form π0(x) ∝ π0(xr)π0(x⊥), where π0(xr) = N (Ξ>r µpr, Ir) and
π0(x⊥) = N (Ξ>⊥µpr, I⊥).

Applying the linear transformation (6) and Lemma 3.2, the parameter-approximated posterior
(5) can be written as

π̂(x|yobs) ∝ π̂(xr, x⊥|yobs) = π(xr|yobs)π0(x⊥), (7)

which is the product of the parameter-reduced posterior

π(xr|yobs) ∝ L (yobs|Φrxr)π0(xr), (8)

and the complement prior π0(x⊥). In this product-form approximation, the prior-to-posterior
update is captured entirely by the parameter-reduced posterior. Approximations of this form nat-
urally yield a scalable posterior exploration scheme: the high-dimensional complement prior π0(x⊥)
is analytically tractable, and the remaining challenge is to explore the analytically intractable but
low-dimensional parameter-reduced posterior (8). Of course, this construction rests on identifying
the LIPS basis Φr. In the rest of this subsection, we will discuss several ways to construct the
LIPS by balancing the influence of the prior and the likelihood.

Remark 3.3. It is usually not feasible to compute and store the high-dimensional basis Φ⊥ ∈
Rn×(n−r). In fact, the construction of the parameter-approximated posterior (7) only requires the
low-dimensional LIPS basis Φr in order to construct the parameter-reduced posterior. Operations
involving the complement subspace X⊥ are performed using the projector Π⊥ = I −Πr rather than
the high-dimensional basis Φ⊥.
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3.1.2. Likelihood-informed parameter subspace
In previous work [14, 34, 35, 36, 37], the Hessian of the data-misfit function (4) (in particular,

the Gauss-Newton approximation H(x) of the Hessian) is used to quantify the local impact of the
likelihood, relative to the prior, along a parameter direction ϕ. This notion of relative impact is
captured via the local Rayleigh ratio

R(ϕ;x) = 〈ϕ,H(x)ϕ〉
〈ϕ,Γ−1

pr ϕ〉
, (9)

which is maximized (over successively smaller subspaces span⊥ (ϕj)j<i) by generalized eigenvectors
of the matrix pencil (H(x),Γ−1

pr )
H(x)ϕi = γiΓ−1

pr ϕi. (10)

The largest eigenvalues of (10) correspond to parameter directions along which the local curva-
ture of the log-posterior density is more constrained by the log-likelihood than by the log-prior.
Conversely, eigendirections associated with the smallest eigenvalues correspond to directions along
which the likelihood is essentially flat, and hence where the posterior is (locally) determined by
the prior.

Given the local Gauss-Newton approximation of the Hessian, H(x), we can define a local Gaus-
sian approximation of the posterior with covariance Γpos(x) := (H(x) + Γ−1

pr )−1. This covariance
can be written as a low-rank update of the prior covariance:

Γpos(x) ≈ Γ(l)
pos = Γpr −

l∑
i=1

γi
γi + 1ϕiϕ

>
i , (11)

which is in general approximate for l < n. Here ϕi and γi are eigenvectors and eigenvalues from
(10), which depend on the parameter x. In this approximation, the basis {ϕ1, . . . , ϕl} characterizes
the prior-to-posterior update at a given x.

This low-rank update was first used in [34] for computing and factorizing the posterior co-
variance in large-scale linear inverse problems. Spantini et al. [14] proved the optimality of this
approximation at any given l, for linear inverse problems, in the sense of minimizing the Förstner-
Moonen [38] distance from the exact posterior covariance matrix over the class of positive definite
matrices that are rank-l negative semidefinite updates of the prior covariance. For nonlinear inverse
problems, given the posterior mode (i.e., the maximum a posteriori (MAP) estimator)

xMAP = arg max
x

π(x|yobs),

the local Gaussian approximation (11) centered at xMAP yields a Laplace approximation of the
posterior:3

π(x|yobs) ≈ πL(x) = N
(
xMAP , Γpr −

l∑
I=1

γi
γi + 1ϕiϕ

>
i

)
. (12)

For unimodal and nearly Gaussian posteriors, the Laplace approximation might be used directly
as a surrogate for the posterior, as in [36]; alternatively, it can be used as a fixed preconditioner

3More precisely, this is a Laplace approximation with an additional approximation of the covariance as a low-rank
update of the prior, for l < min (rank(H), rank(Γpr)).
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for MCMC sampling, as in the stochastic Newton method of [37]. We will use the Laplace ap-
proximation as a component of certain subspace construction strategies, described in the next
subsection.

We wish to construct the parameter-approximated posterior (7) for nonlinear inverse problems,
and thus must extend beyond Gaussian approximations. Since the Hessian varies over the parame-
ter space for nonlinear forward models, the likelihood-informed directions also vary with x and are
embedded in some nonlinear manifold. To build a global linear subspace—the LIPS—that captures
the majority of this nonlinear manifold, Cui et al. [15] extends the pointwise criterion (9) into the
expected value of the Rayleigh quotient over the posterior

Eπ(x|yobs) [R(φ;x)] = 〈φ, Spost φ〉
〈φ,Γ−1

pr φ〉
, (13)

where Spost is the posterior expectation of the Gauss-Newton approximation of the Hessian (GNH):

Spost =
∫
X
H(x)π(dx|yobs). (14)

This way, the LIPS can be obtained through the eigendecomposition of the matrix pencil
(
Spost,Γ−1

pr

)
,

Spost φi = λiΓ−1
pr φi. (15)

The eigenvectors {φ1, . . . , φr} correspond to the r leading eigenvalues of (15), such that λ1 ≥ λ2 ≥
. . . ≥ λr ≥ τg > 0, span the LIPS. Here the truncation threshold τg is usually set to a value
less than one, e.g., τg = 10−1, thus only removing parameter directions where the impact of the
likelihood is significantly smaller than that of the prior.

The evaluation of the expected GNH (14) should be carried out adaptively during posterior
exploration. In particular, we consider approximating Spost using Monte Carlo integration,

Ŝpost = 1
N

N∑
k=1

H(x(k)),

where x(k) ∼ π(x|yobs), k = 1 . . . N , are posterior samples adaptively selected during posterior
exploration. Section 3.3 will describe how we fit this task into an adaptive sampling framework
where posterior exploration and posterior approximation are carried out simultaneously.

Lemma 3.4. The eigenvectors {φ1, . . . , φr} are linearly independent and form a LIPS basis Φr =
[φ1, . . . , φr] that is orthogonal with respect to the inner product 〈·, ·〉Γpr.

Proof. The result directly follows from the fact that the estimated expected GNH Ŝpost is symmetric
positive semidefinite and the prior covariance Γpr is symmetric positive definite. See Theorem 15.3.3
of [39] for details.

As a consequence of Lemma 3.4, we can construct the matrix Ξr = Φr (Φ>r Φr)−1, such
that Ξ>r Φr = Ir, and the projector Πr = ΦrΞ>r as in Definition 3.1. This way, the parameter-
approximated posterior (7) and parameter-reduced posterior (8) can be defined.
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3.1.3. Parameter subspace identification: choice of reference distribution
The LIPS basis discussed above results from balancing the influence of the prior and the likeli-

hood over the support of the posterior. It is also possible to quantify this relative influence using
expectations of the local Rayleigh quotient over other reference distributions. Depending on the
choice of reference distribution, the local likelihood-informed directions—summarized by the local
Rayleigh quotient—are weighed differently in the resulting LIPS. Furthermore, the involvement of
the observed data set in the reference distribution affects how computational resources might be
allocated to LIPS construction. If the observed data are not involved in the reference distribution,
the evaluation of the expectation can be performed once for a particular combination of forward
model and prior, and reused for different data sets.4 This way, LIPS construction is decoupled
from any particular data set, and we consider it to be an offline procedure. In contrast, if the ref-
erence distribution involves the observation—e.g., if it is the posterior—the resulting expectation
evaluation is an online procedure, as the LIPS basis must be recomputed for each new data set.

One obvious candidate for the reference distribution is the prior, which leads to a LIPS basis
that is constructed from the eigendecomposition of the matrix pencil

(
Spr,Γ−1

pr

)
, where

Spr =
∫
X
H(x)π0(dx),

is the expected GNH over the prior. As discussed above, using the prior as a reference distribution
leads to an offline procedure for parameter dimension reduction.

Alternatively, we can set the reference distribution to be the Laplace approximation (12),
which is an inexpensive and easy-to-sample surrogate for the posterior. This way, the LIPS can be
obtained from the eigendecomposition of the pencil

(
SL,Γ−1

pr

)
, where

SL =
∫
X
H(x)πL(dx).

Although samples can be directly drawn from the Laplace approximation, this choice of reference
constitutes an online approach, since the Laplace approximation is data-dependent.

All of the LIPS bases discussed above are orthogonal with respect to the inner product 〈·, ·〉Γpr ,
since they result from generalized eigenproblems involving Γ−1

pr . We note that other choices of
reduced parameter basis can also lead to the product-form approximated posterior (7), provided
that the basis is orthogonal with respect to 〈·, ·〉Γpr . For instance, the basis defined by the truncated
Karhunen-Loève expansion of the prior covariance [24] also satisfies this property.

All of the parameter subspace identification techniques presented here can be interpreted as
the result of an eigendecomposition. For each technique, Table 1 summarizes the specific form
of eigendecomposition, whether reduction is offline/online, and whether adaptive sampling is re-
quired. We compute the expected Hessians required for both Prior-LIPS and Laplace-LIPS using
Monte Carlo integration, where samples can be directly generated from the prior and the Laplace
approximation. These Hessian evaluations are therefore embarrassingly parallel. Posterior-LIPS,
on the other hand, requires posterior sampling; we defer a discussion of the associated adaptive
framework to Section 3.3. We also note that Prior-KL is less computationally demanding than the
other methods discussed here, as it only involves an eigendecomposition of the prior covariance.

4The integrand H(x) does not depend on the data, and therefore this expectation does not depend on the data.
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Table 1: Summary of parameter dimension reduction methods discussed in Section 3.1.3: the associated eigende-
composition, whether the process is offline/online, and whether adaptive sampling is required.

Method Eigendecomposition Online/offline Adaptive sampling?
Posterior-LIPS

(
Spost,Γ−1

pr

)
Spost =

∫
XH(x)π(dx|yobs) online yes

Laplace-LIPS
(
SL,Γ−1

pr

)
SL =

∫
XH(x)πL(dx) online no

Prior-LIPS
(
Spr,Γ−1

pr

)
Spr =

∫
XH(x)π0(dx) offline no

Prior-KL Γpr – offline no
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Figure 1: Illustration of Example 3.5. (a) Forward model, with two different observations y(1)
obs and y

(2)
obs marked

by the triangle and the circle, respectively. (b) Contours of the posterior density π(x|y(1)
obs). (c) Contours of the

posterior density π(x|y(2)
obs). On (b) and (c), the parameter bases computed using posterior-LIPS, Laplace-LIPS, and

prior-LIPS are depicted by the solid, dashed, and dotted lines, respectively.

Example 3.5 (Parameter reduction with different reference distributions). To demonstrate the
properties of different parameter reduction approaches, we consider a two-dimensional inverse prob-
lem with the following scalar-valued forward model:

F (x) := 1
2 [(erf (x1 + 1) + 1) (x1 + 1) + (erf (x2 + 1) + 1) (x2 + 1) + (1− erf (x1 + 1)) cos(x2)] .

We define a Gaussian observational error e ∼ N (0, σ−2I1) with σ = 0.25, and a prior π0(x) =
N (0, I2). Figure 1(a) shows the response of the forward model over a range of input parameter
values (x1, x2). Different observations will yield posterior distributions with dramatically different
shapes and orientations, due to the nonlinearity of the forward model. We consider two different
observation values y(1)

obs and y(2)
obs, generated by setting the underlying true parameter to (−1,−2)

and (3, 3), respectively. These observations are illustrated by the triangle and the circle in Figure
1(a).

As shown in Figure 1(b), the posterior distribution π(x|y(1)
obs) has strongly non-Gaussian struc-

ture in both parameter dimensions, as the observation y(1)
obs falls in a regime where the forward model

exhibits nonlinear behavior. In contrast, the observation y
(2)
obs corresponds to a parameter regime

10



where the forward model is rather linear, and thus the posterior distribution π(x|y(2)
obs), shown in

Figure 1(c), has nearly Gaussian structure.
In this example, the Prior-KL basis simply corresponds to the canonical basis of the posterior,

as the prior is an independent standard Gaussian. The Prior-LIPS basis is illustrated with dotted
lines and remains unchanged for both data sets, while the Posterior-LIPS basis is illustrated with
solid lines and depends on the data set. The vectors corresponding to the Prior-LIPS basis and
the Posterior-LIPS basis in the figure are scaled by their associated generalized eigenvalues. For
the data set y(2)

obs, the likelihood function only informs one dimension in the parameter space, since
the forward model is nearly linear in the support of the posterior. Posterior-LIPS captures this
likelihood-informed subspace accurately, but Prior-LIPS does not; it suggests that two parameter
directions are of comparable importance. Laplace-LIPS produces results similar to Posterior-LIPS
for the data set y(2)

obs, but the bases generated by Laplace-LIPS and Posterior-LIPS are rather dif-
ferent for the data set y(1)

obs. This is expected, because the posterior π(x|y(2)
obs) is nearly Gaussian

and well described by its Laplace approximation, whereas the posterior π(x|y(1)
obs) is strongly non-

Gaussian.

As shown by the above example, all three strategies for computing the LIPS can reveal the
impact of the likelihood on different parameter directions, relative to the prior. The Prior-LIPS does
not depend on the data set, and hence can be constructed offline for all possible observations. Its
potential drawback is that the resulting low-dimensional parameter subspace may contain directions
unimportant to the posterior at hand; alternatively, some important posterior structure may be
missed, due to the averaging of different Hessians over a much less concentrated parameter measure.
In comparison, the online Posterior-LIPS can accurately capture likelihood-informed directions for
a specific posterior distribution of interest. Depending on the shape of the posterior, Laplace-LIPS
can be used either as a replacement for Posterior-LIPS when the posterior is nearly Gaussian, or
as an initial guess for Posterior-LIPS that is adaptively refined (see Section 3.3).

3.2. Likelihood-informed state reduction
Although the parameter-approximated posterior π̂(x|yobs) ∝ π(xr|yobs)π0(x⊥) enables signifi-

cant reductions in the algorithmic complexity of posterior exploration, by confining sampling to a
lower dimensional space, a remaining computational bottleneck is the exploration of the parameter-
reduced posterior π(xr|yobs). The cost of this exploration is dominated by forward model evalua-
tions, and thus we turn to model reduction approaches.

3.2.1. Model reduction
In the parameter-reduced posterior, by projecting the argument of the likelihood function onto

the subspace spanned by the reduced parameter basis Φr, the forward model defined by (1) and
(2) can be rewritten as

A(u,Φrxr) = 0, and y = C(u,Φrxr). (16)

To reduce the computational cost, we wish to solve a projection of the parameter-reduced forward
model (16) onto a reduced dimensional state subspace. Without loss of generality, we consider the
system model A(u, x) = 0 to consist of a linear operator L and a nonlinear function f , which take
the form

L(x)u+ f(x, u) = 0. (17)
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Suppose that variation of the m-dimensional state lies within an s-dimensional subspace spanned
by a basis Vs ∈ Rm×s. Then the state u can be approximated by a linear combination of the reduced
basis vectors, i.e., u ≈ Vsus. This way, the parameter-reduced system model A(u,Φrxr) = 0 can
be approximated by the following Galerkin projection:

V >s L(Φrxr)Vs︸ ︷︷ ︸
Ls(xr)

us + V >s f(Vsus,Φrxr) = 0. (18)

If s � m, the dimension of the unknown state in (18) is greatly reduced compared to that of the
original system (17). However, (18) cannot necessarily be solved quickly, because the reduced-order
model still requires evaluating the full-scale system matrices or residual and then projecting those
matrices or the residual onto the reduced state subspace. Many elements of these computations
depend on the state and parameter dimension of the original system, and hence this process is
typically computationally expensive (unless there is special structure to be exploited, such as affine
parametric dependence). In this situation, methods such as missing point estimation [40], empirical
interpolation [41], or its discrete variant [42], can be used to approximate the nonlinear term in
the reduced-order model by selective spatial sampling.

We employ the discrete empirical interpolation method (DEIM) [42] to approximate the non-
linear terms of (18). Suppose that the outputs of a nonlinear function f(Vsus,Φrxr) in (18) can
be captured by a linear subspace spanned by the basis Θt ∈ Rm×t. Then DEIM approximates the
nonlinear term by

f(Vsus,Φrxr) ≈ Θtα(us, xr).

Here the lower-dimensional coefficient function α(·, ·) ∈ Rt is constructed by selectively evaluating
the nonlinear function f at output indices p1, . . . , pt, which are chosen by a greedy procedure. This
leads to a masking matrix Pt = [δp1 , . . . , δpt ], where δi is the canonical basis in Rm and the matrix
P>t Θt is nonsingular. This way, the coefficient function can be determined by P>t f(Vsus,Φrxr) =
P>t Θtα(us, xr), which yields

α(us, xr) =
(
P>t Θt

)−1
P>t f(Vsus,Φrxr). (19)

The resulting DEIM approximation of the reduced-order model (18) becomes

Ls(xr)us + V >s Θtα(us, xr) = 0, (20)

and the associated model outputs are

y = C(Vsus,Φrxr). (21)

Together (20) and (21) define a reduced-order model y = F̃ (xr) that maps a realization of the
reduced parameter xr to an approximation of the observable model outputs. In situations where
the observables are high-dimensional or the observation function C involves complex nonlinear
relations, we can again employ the DEIM method to approximate the observation model.

3.2.2. State subspace identification: choice of reference distribution
At the heart of model reduction is the identification of the reduced bases Vs and Θt. We employ

the well-known proper orthogonal decomposition (POD) method [19, 20], also known in statistics
as principal component analysis, for this task. If the parameter x is distributed according to a
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probability distribution p, the eigenvectors corresponding to the leading eigenvalues of the state
covariance matrix,5

K =
∫
X
u(x)u(x)>p(dx), (22)

form the reduced state basis Vs in POD. For dynamical problems, time variation of the state
should also be considered, in which case the right-hand side of (22) should be integrated over both
time and the parameter. The covariance matrix is often approximated empirically by full model
states—commonly referred to as snapshots [19]—obtained at parameter samples drawn from the
probability distribution p. Given M samples and the snapshot matrix U = [u(x(1)), . . . , u(x(M))],
the empirical approximation of K takes the form

K̂ = 1
M
U U>.

If the sample size is much smaller than the state dimension, i.e., M � m, the singular value
decomposition (SVD) of U provides an effective way of computing the reduced basis Vs. The basis
Θs can be constructed in a similar fashion.

As in the parameter reduction problem, the choice of an appropriate reference probability dis-
tribution for the parameters x is also essential to identifying the reduced state subspace. Using the
construction of the basis Vs as an example, we now discuss various choices of reference distribution.
In the inverse problems literature, one common choice is the prior distribution [43, 44, 30], which
leads to the state covariance

Kpr =
∫
X
u(x)u(x)>π0(dx). (23)

Alternatively, Cui et al. [16] suggest constructing the reduced-order model over the support of the
posterior rather than the prior. The size and accuracy of the resulting reduced-order model can
scale better with parameter dimension than those of a reduced-order model built from the prior,
since the posterior has a more concentrated support than the prior. In the context of POD, this
choice leads to the state covariance

Kpost =
∫
X
u(x)u(x)>π(dx|yobs). (24)

The choices above can have critical drawbacks for high-dimensional ill-posed inverse problems,
however. Data may only inform a low-dimensional subspace in the parameter space (the LIPS),
within which the posterior distribution concentrates relative to the prior. In contrast, within
the complement of the LIPS, the posterior and the prior are essentially the same. Hence the
variation of the model states induced by either the prior or the posterior is potentially dominated
by the complement prior. This effect is undesirable; recall that the goal of model reduction here
is to accelerate forward model simulations only for exploring the parameter-reduced posterior.
Thus, state variations induced by the prior distribution on the complement of the LIPS should be
eliminated. This task can be readily achieved by choosing the parameter-reduced posterior as the
reference distribution, which leads to the state covariance:

K̃post =
∫
Xr
u(Φrxr)u(Φrxr)>π(dxr|yobs). (25)

5To be precise, (22) is a matrix of second moments of the state, not the state covariance; realizations of the state
are not centered. For simplicity, however, we still refer to this quantity and related expressions as state covariances.
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As in the Posterior-LIPS construction, samples from the parameter-reduced posterior used in a
Monte Carlo approximation of (25) should also be adaptively selected during posterior exploration.
The details of this adaptive sampling procedure will be given in Section 3.3.

If the Laplace approximation (12) is used as an approximation of the posterior, the effect of
the complement prior can be removed by projecting the full-dimensional input parameters onto
the LIPS. This leads to the state covariance

K̃L =
∫
X
u(Πrx)u(Πrx)>πL(dx), (26)

where Πr = ΦrΞ>r is given in Definition 3.1. The data-dependent nature of both the parameter-
reduced posterior and the Laplace approximation necessitate that model reduction be carried out
online when either is used as the reference distribution.

In contrast, using the prior projected onto the LIPS (referred to as the parameter-reduced prior)
as a reference distribution provides an offline model reduction approach; here the state covariance
becomes

K̃pr =
∫
Xr
u(Φrxr)u(Φrxr)>π0(dxr). (27)

To render this approach fully offline, it should be applied together with an offline parameter
reduction method such as Prior-LIPS or Prior-KL .

Example 3.6 (State reduction with different reference distributions). To demonstrate the effect
of the reference distribution on state reduction, we consider the following linear example:

u = Lx, and y = Cu,

where both the state and the parameters have dimension n = m = 200, and d = 20 observations
are collected; thus we have L ∈ R200×200 and C ∈ R20×200. The system model L and the prior
covariance Γpr have eigendecompositions of the form L = ΨL∆LΨ>L and Γpr = Ψpr∆prΨ>pr, and
are constructed randomly. The orthonormal bases ΨL and Ψpr are computed by taking the QR
decompositions of two independent square matrices with independent standard Gaussian entries.
The spectra ∆L = diag{κ1, . . . , κ200} and ∆pr = diag{ρ1, . . . , ρ200} are prescribed as

κi = κ0

(
i

aL

)−bL
, and ρi = ρ0

(
i

apr

)−bpr

.

We choose κ0 = 100, aL = 2, bL = 2, ρ0 = 10, apr = 10 and bpr = 4 in this experiment.
Observations are made at d randomly selected indices of the state vector, and the observational
noise is standard Gaussian.

The left plot of Figure 2 shows the spectra of the prior covariance matrix Γpr and of the system
model L, along with the generalized eigenvalues (15) associated with the LIPS. The right plot of
Figure 2 compares the spectra of the state covariance matrices induced by the prior, the posterior,
the parameter-reduced prior, and the parameter-reduced posterior. We see that the spectra of the
covariance matrices induced by the prior and the posterior decay more slowly than the spectra
induced by the parameter-reduced prior and parameter-reduced posterior. This difference is due to
the high-dimensional complement prior, which induces state variations that are irrelevant to the
observations. Projection onto the LIPS eliminates the effect of the complement prior, and thus the
corresponding state covariance matrices have quickly decaying spectra that in fact vanish at index
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20, which is the number of observations and the dimension of the LIPS. Note also that eigenvalues
of the state covariance matrix induced by the parameter-reduced posterior decay more quickly than
those induced by the parameter-reduced prior, since the posterior is more concentrated than the
prior within the LIPS.
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Figure 2: The impact of parameter reference distributions on model reduction, as described in Example 3.6. Left:
spectra of the prior covariance matrix Γpr (stars) and the system model L (crosses), along with generalized eigen-
values from (15) (circles). Right: spectra of the state covariance matrices induced by the prior, the posterior, the
parameter-reduced prior, and the parameter-reduced posterior; these are denoted by stars, crosses, triangles and
circles, respectively.

Table 2: Summary of state reduction methods: the associated state covariance matrix, whether the process is
offline/online, and whether adaptive sampling is required.

Method state covariance online/offline adaptive sampling?
Posterior-LISS K̃post =

∫
X u(Φrxr)u(Φrxr)>π(dxr|yobs) online yes

Laplace-LISS K̃L =
∫
X u(Πrx)u(Πrx)>πL(dx) online no

Prior-POD K̃pr =
∫
X u(Φrxr)u(Φrxr)>π0(dxr) offline no

Since the amount of state variation in the reduced parameter subspace is greatly reduced
relative to that induced by either the full-dimensional posterior or the full-dimensional prior, we
will henceforth construct reduced-order models only within the reduced parameter subspace. For
each state reduction technique of this kind, Table 2 summarizes the specific form of the state
covariance, whether reduction is offline/online, and whether adaptive sampling is required, given
the choice of parameter reference distribution. Overall, the benefit of pursuing model reduction
on the reduced parameter subspace is twofold: first, this approach addresses challenges in the
scalability of model reduction with parameter dimension; second, it reduces the computational
cost of handling high-dimensional parameters in the parameterized reduced model.
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3.2.3. Jointly-approximated posterior
By replacing the forward model F : Rn → Rd with the reduced-order model F̃ : Rr → Rd, the

data-misfit function (4) can be approximated as

η̃(xr) = 1
2‖F̃ (xr)− yobs‖2Γobs . (28)

Then the resulting jointly-reduced posterior distribution has the form

π̃(xr|yobs) ∝ exp (−η̃(xr))π0(xr). (29)

Together with the complement prior, this defines a product-form jointly-approximated posterior

π̃(x|yobs) ∝ π̃(xr, x⊥|yobs) ∝ π̃(xr|yobs)π0(x⊥). (30)

We use the descriptor ‘joint’ to signify that both the parameter space and the model state space
have been reduced in these posterior approximations. Because the high-dimensional complement
prior π0(x⊥) is analytically tractable and the low-dimensional jointly-reduced posterior avoids
computationally expensive full forward model evaluations, this jointly-approximated posterior can
be used to design scalable and computationally efficient posterior exploration schemes.

Remark 3.7 (Data reduction). In problems where the data set is high-dimensional, the computa-
tion time required to evaluate the data-misfit function (4) can also be significant. These evaluations
can be accelerated by exploiting low-dimensional structure in the data space, via the DEIM method.
Suppose that the dimension of the output of the observation model, y = C(Vsus,Φrxr), is much
larger than the reduced parameter dimension and the reduced state dimension. Suppose also that
the variation of the model outputs, C(Vsus,Φrxr), can be captured by a subspace spanned by a basis
Yo ∈ Rd×o that is orthogonal with respect to 〈·, ·〉Γobs. As in the model reduction case, the DEIM
method can be used to identify a masking matrix Po = [δp1 , . . . , δpo ], where δi is the canonical ba-
sis in Ro, such that P>o Yo is nonsingular. Thus we can determine a low-dimensional coefficient
function

β(us, xr) =
(
P>o Yo

)−1
P>o C(Vsus,Φrxr), (31)

which selectively evaluates the nonlinear function C at indices p1, . . . , po. The resulting approxi-
mated observation model has the form

ỹ = Yo β(us, xr). (32)

In this setting, the coefficient function β and the reduced system model (20) together define a new
reduced-order forward model F̂ : Rr → Ro that has a smaller number of outputs. This corresponds
to model outputs ỹ = YoF̂ (xr) in the original observable space. It leads to an approximated data-
misfit function in the form of

η̃(xr) = 1
2

∥∥∥YoF̂ (xr)− yobs
∥∥∥2

Γobs

= 1
2

∥∥∥F̂ (xr)− Y >o Γ−1
obs yobs

∥∥∥2
+ c, (33)

where c = 1
2‖(I − YoY

>
o ) yobs‖2Γobs

is a constant. As in the state reduction case, we can also use a
POD approach with the parameter-reduced posterior, the Laplace approximation, or the parameter-
reduced prior as reference distributions for constructing the reduced data basis.
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3.3. Integrated algorithms
Concisely, construction of the jointly-approximated posterior distribution involves parameter

reduction followed by model reduction. Combining the parameter reduction methods of Section
3.1 with the state reduction methods of Section 3.2 leads to various integrated strategies for this
task. We list several algorithmic options in Table 3, distinguished according to their online/offline
nature and whether adaptive sampling is required.

Table 3: Summary of sampling strategies for constructing the jointly-approximated posterior.

Strategy Prior-KL-POD Prior-Joint Laplace-Joint Posterior-Joint
Parameter reduction Prior-KL Prior-LIPS Laplace-LIPS Posterior-LIPS
State reduction Prior-POD Prior-POD Laplace-LISS Posterior-LISS
Sampling requirement offline offline online online and adaptive

3.3.1. Non-iterative strategies
The Prior-KL-POD strategy is the simplest option above: we compute the reduced parameter

basis using the truncated KL expansion of the prior, and then compute a POD basis for the state
by sampling from the parameter-reduced prior. In contrast, the Prior-Joint strategy uses the
prior expectation of the GNH to construct a low-dimensional parameter subspace and defines the
parameter-reduced prior accordingly; this strategy is still entirely offline, as both the parameter
and state subspaces are independent of the data. Only prior samples are required in these two
strategies. Full model evaluations in the Prior-POD step and Hessian evaluations in Prior-LIPS
estimation can be massively parallelized. The computational cost of Prior-KL-POD is less than
that of Prior-Joint, since the former involves no Hessians in the parameter reduction step.

Given observed data, the Laplace-Joint strategy involves first finding the posterior mode by
solving an optimization problem. Then samples can be directly drawn from the Laplace approxi-
mation (12). In this way, the GNH evaluations required for Laplace-LIPS parameter reduction and
the full model evaluations required for Laplace-LISS state reduction can also be carried out in par-
allel. The computational cost thus is comparable to that of the Prior-Joint strategy. However,
in contrast with Prior-Joint, Laplace-Joint is an online strategy that depends on a particular
realization of the observed data—and on the associated approximation of the posterior. Using the
data focuses attention on regions of high posterior probability and leads to a localization effect
in the identification of subspaces; thus, we expect that the jointly-approximated posterior com-
puted by Laplace-Joint will have better accuracy than those produced by the Prior-KL-POD
or Prior-Joint strategies, for comparable dimensions of the parameter and state bases. We will
explore this conjecture in numerical results below.

3.3.2. Iterative strategy
In the Posterior-Joint strategy, constructing parameter and state subspaces requires comput-

ing expectations over the full posterior (to obtain the posterior-LIPS) and the parameter-reduced
posterior (to obtain the posterior-LISS). Since direct sampling is not feasible a priori—after all, we
are computing these bases in order to facilitate posterior sampling—Algorithm 1 proposes an iter-
ative sampling framework to construct the reduced bases adaptively during posterior exploration.
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Algorithm 1 Iterative construction used in the Posterior-Joint strategy.
Require: At iteration k = 0, initialize the jointly-approximated posterior π̃0(x|yobs) to be either

the prior or the Laplace approximation (12).
Require: At iteration k, given (i) the reduced data-misfit function η̃k(xr) and the jointly-reduced

posterior π̃k(xr|yobs) induced by the LIPS basis Φk
r and the LISS basis V k

s ; (ii) the projec-
tor Πk

r = Φk
r (Ξkr )> as in Definition 3.1; and (iii) the resulting jointly-approximated posterior

π̃k(x|yobs), one iteration of the algorithm is:
1: if k = 0 then
2: Generate two sample sets, {xi}Ni=1 and {xi}Mi=1, from π̃0(x|yobs) by direct sampling.
3: else
4: Generate two sample sets, {xi}Ni=1 and {xi}Mi=1, from π̃k(x|yobs) by applying MCMC to
π̃k(xr|yobs) and direct sampling to π0(x⊥).

5: end if
6: Compute the LIPS basis Φk+1

r by finding the dominant eigenvectors of (Ŝpost,Γ−1
pr ), where

Ŝpost = 1∑N
i=1 ωi

N∑
i=1

ωiH(xi), and ωi = exp
(
η̃k
(
(Ξkr )>xi

)
− η(xi)

)
. (34)

7: Update the projector Πk+1
r = Φk+1

r (Ξk+1
r )> and compute the weighted snapshot matrix

U = 1√∑M
i=1 υi

[√
υ1u

(
Πk+1
r x1

)
, . . . ,

√
υMu

(
Πk+1
r xM

)]
, (35)

where υi = exp
(
η̃k
(
(Ξkr )>xi

)
− η

(
(Ξk+1

r )>xi
))

, and then compute the reduced state basis
V k+1
s via the SVD of U .

8: For system models involving nonlinear functions, compute the DEIM basis Θk+1
t as in Step 7,

and then construct the masking matrix P k+1
t .

9: Update η̃k+1(xr), π̃k+1(xr|yobs) and π̃k+1(x|yobs).
Note: At k = 0, importance sampling is turned off, i.e., ωi = 1 and υi = 1.

In Algorithm 1, we initialize the jointly-approximated posterior to be either the prior or the
Laplace approximation (12). At each iteration k, two independent sets of samples are generated
from the current jointly-approximated posterior, π̃k(x|yobs), in order to construct reduced param-
eter and state bases using the Posterior-LIPS and Posterior-LISS methods, respectively. In this
step, samples can be directly drawn when k = 0. For k > 0, sampling π̃k(x|yobs) requires ap-
plying MCMC to the low-dimensional and cheap-to-evaluate jointly-reduced posterior π̃k(xr|yobs),
and directly sampling the high-dimensional complement prior π0(x⊥). At each iteration k, we use
the current jointly-approximated posterior π̃k(x|yobs) as the biasing distribution to compute the
posterior expectation of the GNH via importance sampling; this process can be written as

Spost =
∫
X

π(x|yobs)
π̃k(x|yobs)

H(x) π̃k(dx|yobs). (36)

Given the data-misfit function η̃k(xr) induced by the current reduced order model, the importance
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weight
π(x|yobs)
π̃k(x|yobs)

∝ ω(x) := exp
(
η̃k(xr)− η(x)

)
, where xr = (Ξkr )>x, (37)

can only be computed up to a normalizing constant. This leads to the self-normalized importance
sampling estimator of Ŝpost in (34). By finding the dominant eigenvectors of the pencil (Ŝpost,Γ−1

pr ),
we obtain the new LIPS basis Φk+1

r .

Remark 3.8. We note that it is not feasible to store and factorize the matrix Ŝpost directly. By
computing the action of the local GNH H(xi) on vectors—each action requires one forward model
evaluation and one adjoint model evaluation—low-rank approximations of each sampled H(xi) can
be computed using Krylov subspace methods [45] or randomized algorithms [46, 47]. Monte Carlo
estimates of the expected Hessians used to identify the Laplace-LIPS and the Prior-LIPS are con-
structed in the same way. We refer readers to [15, 17] for more details on storage management
and computational strategies.

The updated LIPS basis Φk+1
r leads to a new parameter-reduced posterior πk+1(xr|yobs), and

then the next task is to compute the new reduced-order model using the Posterior-LISS. Since
finding the Posterior-LISS requires integration over πk+1(xr|yobs), which can be computationally
expensive, we again employ importance sampling with the previous jointly-approximated posterior
π̃k(x|yobs) as the biasing distribution. We use the following identity

K̃post =
∫
Xr
u
(
Φk+1
r xr

)
u
(
Φk+1
r xr

)>
πk+1(dxr|yobs),

=
∫
X
u
(
Πk+1
r x

)
u
(
Πk+1
r x

)>
π̂k+1(dx|yobs),

to derive the importance sampling formula in the full parameter space. Thus, the state covariance
estimated over πk+1(xr|yobs) can be written as

K̃post =
∫
X

π̂k+1(x|yobs)
π̃k(x|yobs)

u
(
Πk+1
r x

)
u
(
Πk+1
r x

)>
π̃k(dx|yobs). (38)

As in the parameter reduction case, the likelihood ratio

π̂k+1(x|yobs)
π̃k(x|yobs)

∝ υ(x) := exp
(
η̃k
(
(Ξkr )>x

)
− η

(
(Ξk+1

r )>x
))
, (39)

can only be computed up to a normalizing constant, and therefore we use self-normalized impor-
tance sampling. When the SVD is used to compute the POD basis, this leads to the weighted
snapshot matrix in (35). We note that the full model evaluation in the parameter-reduced data-
misfit function η

(
(Ξk+1

r )>x
)
in (39) generates exactly the snapshot u(Πk+1

r x) used in computing
the POD basis.

At the first iteration, the initial distribution π̃0(x|yobs) can have a large discrepancy from
the posterior, and thus the resulting importance weights ωi and υi can potentially have large
variances. To overcome this potential sampling deficiency, we set the weights ωi and υi to 1 at the
first iteration. This way, the initial distribution is used as a surrogate to explore the support of
the posterior, and importance sampling only kicks in at later iterations to estimate the LIPS and
the LISS.
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Remark 3.9. In each iteration of Algorithm 1, constructing the LIPS involves evaluating the
forward model—and hence the full posterior density—at a set of samples, and computing the action
of the GNH on a number of directions for each sample in this set. In addition, the forward
model and the full posterior density are evaluated at another set of samples—projected onto the
subspace spanned by the LIPS—to construct the reduced-order model. Based on our numerical
experience, a sample size on the order of hundreds is sufficient for both steps. We also note that
the first iteration of Algorithm 1 generates a jointly-approximated posterior equivalent to the result
of either the Prior-Joint strategy or the Laplace-Joint strategy, depending on the choice of
initial distribution.

To ensure the convergence of the self-normalized importance sampling estimators (34) and
(35), it is required that π̃k(x|yobs) > 0 whenever π(x|yobs) > 0 , and that π̃k(x|yobs) > 0 whenever
π̂k+1(x|yobs) > 0, for any k > 0. Furthermore, distributions constructed from the low-dimensional
subspaces are not guaranteed to capture the tails of the posterior accurately, and hence the weights
ω(x) and υ(x) might have large variance in some situations. Bounding ω(x) and υ(x) from above,
however, can control the variance of the importance weights and thus guarantee finite variance of the
estimators. The following lemma establishes that by assigning upper bounds to the approximated
data-misfit functions, the ratios ω(x) and υ(x) can be bounded.

Lemma 3.10. Given an upper bound K > 0 on the parameter-approximated data-misfit function
η(Ξ>r x) and the jointly-approximated data-misfit function η̃(Ξ>r x), i.e.,

η(Ξ>r x) ≤ K <∞ and η̃(Ξ>r x) ≤ K <∞, (40)

the ratios ω(x) and υ(x) defined in (36) and (39) are bounded as ω(x) ≤ exp(K) and υ(x) ≤
exp(K).

Proof. Since all the data-misfit functions have the form of a weighted L2 norm, their values cannot
be negative, i.e., η (x) ≥ 0, η(Ξ>r x) ≥ 0, and η̃(Ξ>r x) ≥ 0. The upper bounds on η(Ξ>r x) and
η̃(Ξ>r x) in (40) then lead to

η̃(xr)− η(x) ≤ K and η̃(Ξ>r x)− η(Ξ>r x) ≤ K.

Thus both ratios ω(x) and υ(x) are bounded above by exp(K).

We employ a heuristic based on a (somewhat frequentist) probabilistic argument to choose a
value of K to impose as a bound on our misfit functions. If the whitened residual in the data-misfit
function, Γ−1/2

obs (F (x)−yobs), is a d-dimensional random vector whose components are independent
standard Gaussians, then the data-misfit function follows a chi-squared distribution with d degrees
of freedom, χ2

d. Then the upper bound K can be chosen so that the probability of the data-misfit
function exceeding K is τd � 1, i.e.,

P[z > K] = τd, where z ∼ χ2
d.

Here we choose τd = 10−4.
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3.3.3. Posterior exploration schemes
The jointly-approximated posterior provides a launching point for many scalable and com-

putationally efficient posterior sampling schemes: the analytically tractable and high-dimensional
complement prior is sampled directly, while the low-dimensional and analytically intractable jointly-
reduced posterior can be sampled by various MCMC methods. Evaluations of the latter density
are accelerated because they rely only on the reduced-order forward model. In this paper, we
employ the adaptive Metropolis-adjusted Langevin Algorithm (MALA) [48] to sample the jointly-
reduced posterior. We note that the separable representation of the jointly-approximated posterior
is amenable to a range of alternative posterior exploration or integration approaches, e.g., implicit
sampling [49, 50], the randomize-then-optimize method [51], and sparse quadrature [52, 53, 54].

If, on the other hand, one would like to compute the expectation of a function of interest
g(x) over the full posterior, samples from the jointly-approximated posterior can be used to derive
importance sampling estimates thereof. Bounding the jointly-approximated posterior as in Lemma
3.10, and using the identity

E [g(x)] =
∫
X
g(x)π(dx|yobs) =

∫
X

π(x|yobs)
π̃(x|yobs)

g(x) π̃(dx|yobs),

yields the estimator

E [g(x)] ≈ 1∑N
i=1 ω(xi)

N∑
i=1

ω(xi)g(xi), (41)

where ω(x) = exp
(
η̃
(
Ξ>r x

)
− η (x)

)
and xi ∼ π̃(x|yobs) for i = 1, . . . , N . This ratio ω(x) could

also be used in a delayed-acceptance MCMC method [22, 23] to sample the full posterior; in
this case, the jointly-approximated posterior is used to “screen” MCMC proposals and thus more
quickly traverse the support of the full posterior. Note that the importance sampling estimator
above requires a full posterior evaluation to compute each importance weight. This effort can be
computationally demanding, but these full posterior evaluations can be massively parallelized, as
the sampling step is based on the jointly-approximated posterior. Further variance reduction might
be achieved using the control variates technique [55].

4. Example 1: atmospheric remote sensing

In this section, we apply our joint approximation approach to a realistic atmospheric remote
sensing problem, where satellite observations from the Global Ozone MOnitoring System (GOMOS)
are used to estimate the concentration profiles of various gases in the atmosphere. We will first
present the GOMOS model, the inverse problem setup, and the reduced-order model. Then we
will demonstrate various aspects of the joint posterior approximation using the GOMOS inversion.

4.1. Problem setup
The GOMOS instrument repeatedly measures light intensities ρν at different wavelengths ν.

First, a reference intensity spectrum ρref is measured above the atmosphere. The transmission
spectrum is defined as Tν = ρν/ρref . The transmissions measured at wavelength ν along the ray
path z are modelled using Beer’s law:

Tν,z = exp
(
−
∫
z

∑
gas

agas
ν (z(ζ))κgas(z(ζ))dζ

)
, (42)
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where κgas(z(ζ)) is the density of a gas (unknown parameter) at tangential height z. The so-called
cross-sections agas

ν , known from laboratory measurements, define how much a gas absorbs light at
a given wavelength.

To approximate the integrals in (42), the atmosphere is discretized. The geometry used for
inversion resembles an onion: the gas densities are assumed to be constant within spherical layers
around the Earth. The GOMOS measurement principle is illustrated in Figure 3.
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Figure 3: The principle of the GOMOS measurement. The reference intensity is measured above the atmosphere.
The observed transmission spectrum is the attenuated spectrum (measured through the atmosphere) divided by
the reference spectrum. The atmosphere is presented locally as spherical layers around the Earth. Note that the
thickness of the layers is much larger relative to the Earth in this figure than in reality. The figure is adopted from
[56], with the permission of the authors.

We assume that the cross-sections do not depend on height. In the inverse problem we have Ngas
gases, Nν wavelengths, and the atmosphere is divided into Nalts layers. The discretization is fixed
so that number of measurement lines is equal to the number of layers. Approximating the integrals
by sums over the chosen grid, and combining information from all lines and all wavelengths, we
can write the model in matrix form as follows:

T = exp(−AB>G>),
where T ∈ RNν×Nalts are the modelled transmissions, A ∈ RNν×Ngas contains the cross-sections,
B ∈ RNalts×Ngas contains the unknown densities, and G ∈ RNalts×Nalts is the geometry matrix that
contains the lengths of the lines of sight in each layer.

Each gas density profile is endowed with an independent log-normal process prior. Equivalently,
the gas density profiles can be represented as B = exp(X). Using MATLAB notation, each
discretized log-profile X(:, i) follows a Gaussian prior N(µ(i)

pr ,Γ(i)
pr ), where Γ(i)

pr is defined by the
squared exponential covariance kernel

Ci(ζ, ζ ′) = σi exp
(
−‖ζ − ζ

′‖2

2ζ2
0

)
, (43)

where the correlation length is ζ0 = 10. In the example below, we will infer Ngas = 4 unknown gas
profiles; thus we choose σ1 = 5.22, σ2 = 9.79, σ3 = 23.66, and σ4 = 83.18. These priors are chosen
to promote smooth gas density profiles with large variations.
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Now let ⊗ denote the Kronecker product and vec(·) be a vectorization operator that stacks
the columns of its matrix argument on top of each other. Using the identity vec(AB>G>) =
(G⊗A)vec(B>), we obtain the vectorized parameter-to-data relationship,

yobs = vec(T ) + e = exp (−(G⊗A) exp(x)) + e, (44)

where x = vec(X>) are the vectorized parameters and e is the measurement error modeled by
independent Gaussian random variables with known variances. Here we adopt the same model
setup and synthetic data set used in [15]. The atmosphere is discretized into Nalts = 50 layers, and
with four profiles to infer, the total dimension of the parameter is n = 200. We have observations
at Nν = 1416 wavelengths, and thus the dimension of the data is d = 70800. Although the data
dimension is much higher than the parameter dimension in this case, the resulting inverse problem
is still ill-posed. The forward model introduces a strong smoothing effect, and thus the high-
dimensional data can inform only a small number of parameter dimensions. Similar situations are
encountered in X-ray tomography [14], where the forward model also involves a system of integral
equations. We refer the readers to [15] for a further description of the model setup and the data
set. For more details about the GOMOS instrument and the Bayesian treatment of the inverse
problem, see [56, 57] and the references therein.

The forward model y = exp (−(G⊗A) exp(x)) maps from R200 to R70800 and involves two
exponential functions. Given a reduced parameter basis Φr and a realization of the reduced pa-
rameter xr, the computational expense of evaluating the forward model with the reduced parame-
ter, exp (−(G⊗A) exp(Φrxr)), arises from several sources: the exponential expression exp(Φrxr),
which involves a matrix-vector product and a 200-dimensional exponential function evaluation;
the matrix-vector product with G ⊗ A; and the evaluation of the 70800 dimensional exponential
function for producing the model outputs. To set up the reduced-order model, the first task is
to construct a DEIM interpolation for the exponential function exp(Φrxr). Given a basis Θt that
spans the subspace capturing the variations of the outputs of exp(Φrxr) and the associated masking
matrix Pt, this DEIM interpolation takes the form

exp(Φrxr) ≈ Θtα(xr), where α(xr) = (P>t Θt)−1 exp(P>t Φrxr).

Then, given a reduced data basis Yo and the associated masking matrix Po, another DEIM inter-
polation is employed to reduce the output dimension of the forward model in the form of

F̃ (xr) = (P>o Yo)−1 exp
(
−P>o (G⊗A)Θtα(xr)

)
. (45)

In the reduced-order model above, the computational cost is dominated by the evaluation of the
nonlinear function α : Rr → Rt, the matrix-vector product with the o × t dimensional matrix
P>o (G⊗A)Θt, and the o-dimensional exponential function. The reduced-order model (45) is used
together with the approximated data-misfit function (33) to accelerate evaluations of the original
data-misfit function, which involved high-dimensional model outputs.

4.2. Numerical results
We first benchmark the parameter reduction methods introduced in Section 3.1. The (squared)

Hellinger distance6 between the full posterior π(x|yobs) and the parameter-approximated posterior

6The Hellinger distance translates directly into bounds on expectations [3], and hence we use it as a metric to
quantify the error of approximated posterior distributions.
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π̂(x|yobs),

D2
H (π(x), π̂(x)) = 1

2

∫
X

(√
π(x|yobs)−

√
π̂(x|yobs)

)2
dx, (46)

is used to evaluate the errors induced by various parameter reduction methods, and to examine
convergence versus the number of basis vectors used for the parameter subspace (LIPS or Prior-KL).
Results are shown in Figure 4. In this example, all three likelihood-informed methods converge more
quickly than Prior-KL (triangles). As expected, Prior-LIPS (squares) is outperformed by the other
two likelihood-informed methods, and Posterior-LIPS (crosses) is more accurate than the other
methods for any given parameter subspace dimension. We note that the Laplace approximation
itself (dashed line) has a rather large Hellinger distance from the posterior. This reflects the
non-Gaussianity of the problem, and should not be confused with the fact that the convergence
curve of the non-Gaussian Laplace-LIPS approximation (diamonds) is sandwiched between those
of Prior-LIPS and Posterior-LIPS.
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Figure 4: Convergence of various parameter reduction methods, for the GOMOS example: squared Hellinger distances
(46) versus the dimensions of the reduced parameter bases Φr defined by Posterior-LIPS, Laplace-LIPS, Prior-LIPS,
and Prior-KL. The dashed line represents the squared Hellinger distance between the full posterior and its Laplace
approximation (12). Both subfigures show the same data, but for clarity we plot with both linear (right) and semilog
(left) scales.

Given a 28-dimensional parameter basis built by Posterior-LIPS, we next benchmark the
state reduction methods introduced in Section 3.2. The (squared) Hellinger distance between
the parameter-reduced posterior π(xr|yobs) and the jointly-reduced posterior π̃(xr|yobs),

D2
H (π(xr), π̃(xr)) = 1

2

∫
Xr

(√
π(xr|yobs)−

√
π̃(xr|yobs)

)2
dxr, (47)

is used to compare the convergence of various state reduction methods, as a function of the number
data basis vectors used in the approximated data-misfit function (33). Four DEIM approximations
of the exponential function exp(Φrxr), with reduced bases Θt of dimension 20, 40, 60 and 80, are
used in this benchmark. Results are shown in Figure 5. In this test, Prior-POD fails to produce
a jointly-reduced posterior of reasonable accuracy (we observe D2

H (π(xx), π̃(xr)) always above
0.9), and thus its performance is not reported. For both Posterior-LISS and Laplace-LISS, the
convergence of the resulting jointly-reduced posteriors depends on both the DEIM interpolation of
the exponential function exp(Φrxr) and on the dimension of the reduced data basis. If the first
DEIM interpolation is too coarse (e.g., dim(Θt) = 20 or 40), the error that can be achieved by
refining the reduced data basis reaches a plateau. But for any DEIM interpolation, the jointly-
reduced posterior induced by Posterior-LISS is about two orders of magnitude more accurate than
that produced by Laplace-LISS.
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Figure 5: Convergence of various data reduction methods, for the GOMOS example. Squared Hellinger distances
(47) versus the dimension of reduced data basis Yo defined by Laplace-LISS and Posterior-LISS are shown in the left
and right columns, respectively. Four different DEIM approximations of the exponential function exp(Φrxr), with
dimensions 20, 40, 60, and 80, are shown for each case. Again, errors are plotted on linear (top) and logarithmic
(bottom) scales.

In the previous comparisons, the posterior-oriented methods (Posterior-LIPS and Posterior-
LISS) show clear advantages over the other methods. Thus, we would expect the various strategies
for constructing the jointly-approximated posterior in Section 3.3 to have similar performance
characteristics. We now demonstrate eight iterations of the Posterior-Joint strategy (Algorithm
1) using either the prior or the Laplace approximation (12) as initial distributions. The reduced
parameter bases are truncated at the eigenvalue threshold threshold τg = 0.1, the DEIM basis Θt

for interpolating the function exp(Φrxr) is truncated to retain eigenvalues above 10−12, and the
reduced data basis is truncated to retain eigenvalues above 10−5. To build the LIPS in each iteration
of Posterior-Joint, the forward model and the action of the GNH in multiple directions are
evaluated at 200 parameter samples. In particular, for each parameter sample, we use one forward
model simulation and the action of GNH on 30 directions. To build the reduced-order model at each
iteration, we evaluate the forward model at 500 parameter samples. In comparison, the number of
forward model and GNH–action evaluations required by Laplace-Joint or Prior-Joint is exactly
the same as that required by one iteration of Posterior-Joint.

To find the MAP, we employ the subspace trust region method of [58, 59] with inexact Newton
iterations. Using the prior mean as the initial guess, finding the MAP requires 25 Newton iterations.
Each Newton iteration involves one forward model evaluation and the action of the GNH on an
average of 8 directions. The computational cost of finding the MAP is much smaller than that
of constructing the jointly-approximated posteriors. But we emphasize that sampling the jointly-
approximated posteriors does not involve any further full forward simulations.

As in the previous comparisons, we use the (squared) Hellinger distance between the full pos-
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Figure 6: Iterations of Algorithm 1, for the GOMOS example. The logarithm of the squared Hellinger distance (48),
and the dimensions of the reduced bases Φr, Yo, and Θt are shown. We show iteration histories beginning with two
different initial distributions: the prior and the Laplace approximation (12).

terior π(x|yobs) and the jointly-approximated posterior π̃(x|yobs),

D2
H (π(x), π̃(x)) = 1

2

∫
X

(√
π(x|yobs)−

√
π̃(x|yobs)

)2
dx, (48)

as the error measure. We also compare the dimension of reduced parameter basis Φr, the dimension
of the DEIM basis Θt, and the dimension of the reduced data basis Yo. The results are shown in
Figure 6. In this example, when the Laplace approximation is used as the initial distribution, the
Hellinger distance (48) remains flat for all iterations, and the dimensions of the various reduced
bases stabilize in the first iteration. In contrast, when the prior distribution is used as the initial
distribution, the algorithm stabilizes at iteration 4, and the Hellinger distance (48) is rather large in
the first three iterations (> 0.9). We recall that the first iteration of Algorithm 1 generates a jointly-
approximated posterior corresponding to either Prior-Joint or Laplace-Joint, depending on the
initial distribution. This difference in initial errors also shows that the Laplace-Joint strategy
can (by itself) be useful for constructing a jointly-approximate posterior in this case, while the
Prior-Joint strategy is not able to provide an accurate approximation.

In Figure 7, we also plot the full posterior and the jointly-approximated posteriors generated
by Posterior-Joint (at iteration 8), Laplace-Joint, and Prior-Joint, as well as the Laplace
approximation (12), marginalized onto the first eight KL basis functions. Here the full poste-
rior is sampled by the DILI MCMC algorithm of [17], which is an exact sampling method. Both
Laplace-Joint and Posterior-Joint yield marginal distributions that are almost identical to
those of the full posterior, whereas the marginals of Prior-Joint demonstrate large discrepancies
with the full posterior. Overall, for this example, running Laplace-Joint is the most compu-
tationally efficient way to generate the jointly-approximated posterior. By running an additional
iteration of Posterior-Joint, the dimensions of the reduced bases can be further reduced without
loss of accuracy.
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5. Example 2: groundwater aquifer inversion

Our second example is an elliptic PDE coefficient inverse problem. In physical terms, our
problem setup corresponds to inferring the transmissivity field of a two-dimensional groundwater
aquifer from partial observations of the stationary drawdown field of the watertable, measured
from well bores.

5.1. Problem setup
Consider a three kilometer by one kilometer problem domain Ω = [0 m, 3000 m]× [0 m, 1000 m],

with boundary ∂Ω. We denote the spatial coordinate by ζ ∈ Ω. Consider the transmissivity field
T (ζ) (units [m2/day]), the drawdown field u(ζ) (units [m]), and sink/source terms q(ζ) (units
[m/day]). The drawdown field for a given transitivity and source/sink configuration is governed
by the elliptic equation:

−∇ · (T (ζ)∇u(ζ)) = q(ζ), ζ ∈ Ω. (49)

We prescribe the drawdown value to be zero on the boundary (i.e., a Dirichlet boundary condition),
and define the source/sink term q(ζ) as the superposition of four weighted Gaussian plumes with
standard width 50 meters. The plumes are centered near the four corners of the domain (at
[20 m, 20 m], [2980 m, 20 m], [2980 m, 980 m] and [20 m, 980 m]) with magnitudes of –3000, 2000,
4000, and –300 [m/day], respectively. We solve (49) by a finite element method.

The discretized transitivity field T (ζ) is endowed with a log-normal prior distribution, i.e.,

T = exp(x), and x ∼ N (µpr,Γpr) , (50)

where the prior mean is set to log(1000 [m/day]) and the inverse of the covariance matrix Γ−1
pr is

defined through the discretization of an Laplace-like stochastic partial differential equation [60],

(−∇ ·K∇+ κ2)x(ζ) =W(ζ), (51)
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where W(ζ) is white noise. As discussed in [3], this way of defining the precision operator of a
Gaussian prior is discretization invariant, i.e., the posterior distribution will converge to its func-
tional limit under grid refinement. In this example, we set the stationary, anisotropic correlation
tensor K to

K =
[

0.55 −0.45
−0.45 0.55

]
,

and put κ = 50. The “true” transmissivity field is a realization from the prior distribution. The
true transmissivity field, the sources/sinks, the simulated drawdown field, and the synthetic data
are shown in Figure 8. Partial observations of the pressure field are collected at d = 13 sensors
whose locations are depicted by black dots in Figure 8(c). The observation operator C is simply
the corresponding “mask” operation. This yields observed data yobs ∈ R13 as

yobs = Cu(ζ) + e,

with additive error e ∼ N (0, σ2I13). The standard deviation σ of the measurement noise is pre-
scribed so that the observations have signal-to-noise ratio 120, where the signal-to-noise ratio is
defined as Var(yobs)/σ2. The noisy data are shown in Figure 8(d).
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Figure 8: Setup of the groundwater inversion example. (a) “True” transmissivity field. (b) Sources and sinks. (c)
Drawdown field resulting from the true transmissivity field, with observation wells indicated by black dots. (d)
Data yobs; circles represent the noise-free drawdowns at each well, while crosses represent the observed drawdowns
corrupted with measurement noise.

In this example, the finite element discretization of (49) uses 120 × 40 bilinear elements to
represent the drawndown field u(ζ), while the transmissivity field T (ζ) is modeled as piecewise
constant for each element. This yields the discretized system of equations

L(T )u = q, T = exp(x), and y = Cu (52)

where the discretized state u has dimension m = 4961, while the transmissivity field T and param-
eter x are of dimension n = 4800. Here, the matrix L(T ) can be expressed as

L(T ) =
n∑
i=1

Li exp(xi),

where Li ∈ Rm×m, i = 1, . . . , n are parameter-independent matrices.
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Model reduction for (52) consists of two steps. Beginning with a reduced parameter basis Φr,
we first construct a DEIM interpolant for the log-normal process T ≈ exp(Φrxr). Given a basis Θt

that spans the subspace capturing variations of exp(Φrxr), and the associated masking matrix Pt,
DEIM interpolation takes the form

exp(Φrxr) ≈ Θtα(xr), where α(xr) = (P>t Θt)−1 exp(P>t Φrxr).

Using MATLAB notation, for a given reduced parameter xr, the matrix L(T ) can be rewritten as

L(T ) =
t∑

j=1

(
n∑
i=1

LiΘt(i, j)
)
αj(xr), (53)

where αj(xr) is the jth component of the vector-valued function α. In the second step, given
a reduced state basis Vs, we approximate the state by u ≈ Vsus and apply Galerkin projection,
yielding a reduced linear system

V >s L(T )Vsus = V >s q.

Substituting (53) into the above equation, the reduced order model can be written as

Ls(xs)us = qs,

where

Ls(xs) =
t∑

j=1
V >s

(
n∑
i=1

LiΘt(i, j)
)
Vsαj(xr) and qs = V >s q,

and the associated reduced observation model is y = (CVs)us. The computational cost of this
reduced order model is dictated by the dimension of the reduced parameter subspace, the reduced
state subspace, and the DEIM basis, and is independent of the dimension of the original model.

5.2. Numerical results
We run the same set of tests as in the GOMOS example. The Hellinger distance (46) is used to

evaluate the errors induced by various parameter reduction methods, versus the number of basis
vectors used in the parameter-approximated posterior. The results are shown in Figure 9. As in the
GOMOS example, the Laplace approximation (dashed line) has a rather large Hellinger distance
from the posterior. Prior-KL parameter reduction (triangles) converges rather slowly relative to
the likelihood-informed methods; it outperforms the Laplace approximation only after 25 or more
basis vectors are included. Prior-LIPS (squares) converges more quickly than Prior-KL, but it
is outperformed by the other two likelihood-informed methods, which use Hessians at parameter
values drawn from approximations of the posterior. The convergence curves of Posterior-LIPS
(crosses) and Laplace-LIPS (diamonds) are almost identical.

Given a 17-dimensional likelihood-informed parameter basis built via Posterior-LIPS, we now
use the Hellinger distance (47) to evaluate the convergence of various state reduction methods, as
a function of the state dimension of the reduced-order model. Because we have a non-smooth prior
in this example, a rather high-dimensional DEIM basis is required to ensure positivity in approxi-
mating the log-normal process exp(Φrxr). Four DEIM approximations of the log-normal process,
with reduced bases Θt having dimensions 250, 350, 450, and 550 are used in this benchmark. The
results are shown in Figure 10. In this test, Posterior-LISS is about one order of magnitude more
accurate than Laplace-LISS, and Laplace-LISS is about one order of magnitude more accurate than
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Figure 9: Convergence of various parameter reduction methods, for the elliptic PDE example: squared Hellinger
distances (46) versus the dimensions of the reduced parameter bases Φr defined by Posterior-LIPS, Laplace-LIPS,
Prior-LIPS, and Prior-KL. The dashed line represents the squared Hellinger distance between the full posterior and
its Laplace approximation (12).
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Figure 10: Convergence of various state reduction methods, for the elliptic PDE example. Squared Hellinger distances
(47) versus the dimension of reduced state bases Vs defined by Prior-POD, Laplace-LISS, and Posterior-LIS are shown
in the left, middle, and right columns, respectively. Four different DEIM approximations of the exponential function
exp(Φrxr), with dimensions 250, 350, 450 and 550, are shown for each case. Again, errors are plotted with linear
(top) and logarithmic (bottom) scales.

Prior-POD. We also note that Posterior-LISS generates the most stable convergence curves among
all the methods tested here.

We now demonstrate eight iterations of the Posterior-Joint strategy (Algorithm 1) using
either the prior or the Laplace approximation (12) as initial distributions. The reduced parameter
basis is truncated to retain components above the eigenvalue threshold τg = 0.05, the DEIM basis
Θt for interpolating the function exp(Φrxr) is truncated to retain eigenvalues above 10−14, and the
reduced state basis is truncated to retain eigenvalues above 10−6. In this example, the numbers of
forward model and GNH–action evaluations used in each iteration of Posterior-Joint, or in a full
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run of Laplace-Joint or Prior-Joint, are the same as those used in the remote sensing example.
We note that the action of the GNH in this case can be computed much more quickly than in the
remote sensing case: the elliptic PDE forward model is self-adjoint, and hence the solution of the
linear system in the forward model can be recycled to compute the action of the GNH without
additional linear solves. Using the prior mean as the initial guess, the subspace trust region method
requires 21 inexact Newton iterations to find the MAP. Each Newton iteration involves one forward
model evaluation and the computation of the GNH action on an average of 5 directions.
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Figure 11: Iterations of Algorithm 1, for the elliptic PDE example. For each iteration, we show the logarithm of the
squared Hellinger distance (48), and the dimension of the reduced parameter basis Φr, the reduced state basis Vs,
and the DEIM basis Θt. We show iteration histories beginning with two different initial sampling distributions: the
prior and the Laplace approximation (12).

As in the GOMOS case, the Hellinger distance (48) from the full posterior is used to evaluate
the accuracy of the jointly-approximated posterior. We also show the evolution of the dimension
of the reduced parameter basis Φr, the dimension of the DEIM basis Θt, and the dimension of
the reduced state basis Vs. Results are shown in Figure 11. In this example, when the Laplace
approximation is used to initiate parameter sampling, the Hellinger distance (48) drops slightly at
iteration 1, and then stays almost at a constant level for the remaining iterations. The dimensions
of various reduced bases also stabilize after the first iteration. When the prior distribution is used
to initiate parameter sampling, the algorithm stabilizes at iteration 2, but the Hellinger distance
(48) is rather large in the first few iterations (> 0.9). We recall that the first iteration of Algo-
rithm 1 generates a jointly-approximated posterior from either Prior-Joint or Laplace-Joint,
depending on the initial distribution. In Figure 12, we plot the full posterior and the jointly-
approximated posteriors generated by Posterior-Joint, Laplace-Joint, and Prior-Joint, as
well as the Laplace approximation (12), marginalized onto the first four KL bases. Here the full
posterior is sampled by the DILI method of [17]. Both Laplace-Joint and Posterior-Joint
have marginal distributions that are almost identical to those of the full posterior, whereas the
marginals of Prior-Joint demonstrate significant discrepancies with the full posterior.

Overall, for this example, running Laplace-Joint is the most computationally efficient way to
construct the jointly-approximated posterior. Beginning with this approximation and running an
additional iteration of Posterior-Joint, the accuracy of the jointly-approximated posterior can
be further improved.
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Figure 12: Marginal posterior distributions for the elliptic PDE example: the full posterior and the jointly-
approximated posteriors generated by Posterior-Joint, Laplace-Joint, and Prior-Joint, along with the Laplace
approximation (12). We show marginal distributions along each of the first four KL modes.

6. Conclusions

This paper addresses two major computational challenges in the Bayesian solution of inverse
problems: the high dimensionality of parameters and the large computational cost of forward model
evaluations. For many MCMC methods, the cost of sampling scales poorly with the former, while
the latter makes repeated evaluations of the posterior density computationally prohibitive. We thus
propose a likelihood-informed approach for identifying and exploiting low-dimensional structure in
both the parameter space and the model state space. The resulting jointly-approximated posterior
can be characterized using only low-dimensional samplers and inexpensive evaluations of a reduced-
order model. The computational cost of computing posterior expectations then scales with the
dimension of the reduced parameter and state spaces, which reflect the intrinsic complexities of
the inverse problem—e.g., how large is the parameter subspace capturing significant changes from
prior to posterior, and what variations in the forward model state are induced by the parameter
distribution on this subspace.

Previous work on the approximation of Bayesian inverse problems has shown that it is useful
to perform some kind of parameter reduction before model reduction [24, 33]. It has also been
demonstrated that focusing attention on a particular region of the parameter space—in particular,
the region of high posterior probability—enables the construction of more accurate reduced-order
models for the purpose of Bayesian inference [16]. The present work uses locality in both of these
senses. We reduce parameter dimension by “filtering out” directions of prior variability that are
irrelevant to the prior-to-posterior update, i.e., directions that the likelihood does not inform.
Within the remaining parameter subspace, we focus on the region of parameter values that is
consistent with the data, i.e., that has high posterior probability. Locality in dimension and in
parameter range then yields smaller variations in the model state, which are better captured by a
reduced-order model. The resulting jointly-approximated posterior can be constructed for systems
with high-dimensional parameters and states, and is accurate in the stringent sense of Hellinger
distance from the true posterior. As a byproduct of this reduction procedure, we are also able
to reduce the cost of handling high-dimensional data, by exploiting low-dimensional structure and
sparsity in the data space.

Within this framework, we introduce several alternative strategies for constructing two key
building blocks of the posterior approximation: the likelihood-informed parameter subspace (LIPS)
and the associated likelihood-informed state subspace (LISS). One interesting aspect of these strate-
gies is the choice of reference distribution; options include the prior, a Laplace approximation of
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the posterior, or the posterior itself. Our numerical examples demonstrate that posterior-focused
reference distributions, while “online” in the sense of depending on the data, yield the most accu-
rate approximations for a given subspace dimension. All of these strategies contain many highly
parallelizable computations.

While the present work has used snapshot-style approaches to constructing appropriate sub-
spaces of the parameter space and state space, future work might use optimization on matrix
manifolds to directly search for optimal bases in nonlinear settings. It may also be useful to
extend beyond the essentially linear dimension reduction strategies employed here to identify non-
linear manifolds that better capture the prior-to-posterior update and associated variations of the
model state. Finally, we note that our current approximations focus on inverse problems with
nonlinear forward models but prescribed Gaussian priors. It is natural to consider generalizations
to hierarchical Gaussian priors, where the prior is not precisely fixed but rather its mean and
precision/covariance are controlled by additional hyperparameters. The posterior approximations
developed here may be useful building blocks in this hierarchical Bayesian setting.
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