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Abstract. A greedy algorithm for the construction of a reduced model with reduction in both
parameter and state is developed for an efficient solution of statistical inverse problems governed
by partial differential equations with distributed parameters. Large-scale models are too costly to
evaluate repeatedly, as is required in the statistical setting. Furthermore, these models often have
high-dimensional parametric input spaces, which compounds the difficulty of effectively exploring
the uncertainty space. We simultaneously address both challenges by constructing a projection-
based reduced model that accepts low-dimensional parameter inputs and whose model evaluations
are inexpensive. The associated parameter and state bases are obtained through a greedy procedure
that targets the governing equations, model outputs, and prior information. The methodology and
results are presented for groundwater inverse problems in one and two dimensions.
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1. Introduction. Statistical inverse problems governed by partial differential
equations (PDEs) with spatially distributed parameters pose a significant computa-
tional challenge for existing methods. While the cost of a repeated PDE solutions
can be addressed by traditional model reduction techniques, the difficulty in sam-
pling in high-dimensional parameter spaces remains. We present a model reduction
algorithm that seeks low-dimensional representations of parameters and states while
maintaining fidelity in outputs of interest. The resulting reduced model accelerates
model evaluations and facilitates efficient sampling in the reduced parameter space.
The result is a tractable procedure for the solution of statistical inverse problems
involving PDEs with high-dimensional parametric input spaces.

Given a parameterized mathematical model of a certain phenomenon, the forward
problem is to compute output quantities of interest for specified parameter inputs. In
many cases, the parameters are uncertain, but they can be inferred from observations
by solving an inverse problem. Inference is often performed by solving an optimization
problem to minimize the disparity between model-predicted outputs and observations.
Many inverse problems of this form are ill-posed in the sense that there may be many
values of the parameters whose model-predicted outputs reproduce the observations.
The set of parameters consistent with the observations may be larger still if we also
admit noise in the sensor instruments. In the deterministic setting, a regularization
term is often included in the objective function to make the problem well-posed. The
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form of the regularization is chosen to express preference for desired characteristics of
the solution (e.g., smoothness).

While the regularized deterministic formulation leads to a single point estimate
in parameter space, a statistical approach quantifies the relative likelihood of the
observation-consistent parameters. The result is a probability density function over
the parameters termed the posterior distribution [6, 25, 35]. Under assumptions on
the probability distribution of sensor noise, the relative likelihood of observation-
consistent parameters can be ascertained by Bayesian inference. In this setting we
can also express a preference for solutions with certain characteristics in the prior
distribution. The prior distribution expresses the relative likelihood of parameters
independently of the observations. In this way we may include in the formulation any
problem-specific knowledge outside of the mathematical model of the phenomena of
interest.

In decision-making scenarios we require the evaluation of weighted integrals of the
posterior over parameter space, e.g., mean and variance. For applications of interest
where we may have millions of parameters, the associated integral computations can-
not be performed analytically, nor can they be estimated by numerical quadrature.
Instead, we compute approximations to the moments by generating samples from the
posterior distribution and calculating the discrete analogues. Samples may be gen-
erated from an implicitly defined posterior by Markov chain Monte Carlo (MCMC)
methods [2, 7, 10, 11, 17, 18, 19, 28, 30] whereby a Markov chain is established whose
stationary distribution is the posterior.

The Metropolis–Hastings algorithm [11] is an MCMC method. At each step, a
new sample is generated by proposing a candidate and then accepting or rejecting
based on the associated Hastings ratio. Computation of the Hastings ratio requires
one posterior evaluation, which, for applications of interest, corresponds to the nu-
merical solution of a PDE. A repeated solution of a PDE is a prohibitively expensive
task even for some simple model problems. In addition to the computational cost of
the sampling process, an efficient sampler is difficult to design for high-dimensional
parameter spaces. Applications of interest are parameterized by distributed field
quantities, and when discretized, have dimensionality in the millions or more, putting
them far beyond the reach of current MCMC methods..

In the present paper, we address challenges of sampling a high-dimensional param-
eter space and the cost of PDE solutions at each posterior evaluation by projection-
based model reduction. We develop a reduced model with low-dimensional parametric
input space and low-dimensional state space but whose outputs are accurate over the
parameter range of interest. The reduction in state (and to a lesser degree, the
parameter) accelerates PDE solutions and therefore posterior evaluations; reduction
in parameter permits sampling in a much lower-dimensional space where traditional,
nonadaptive Metropolis–Hastings samplers are effective and require little hand tuning.

Model reduction is the process by which one derives a low-dimensional, computa-
tionally inexpensive model that accurately predicts outputs of a high-fidelity, compu-
tationally costly model. Traditionally, the model is a map from an input space to a
set of outputs through state space. Projection-based methods like moment-matching
[12, 13], proper orthogonal decomposition [22, 34], and reduced basis methods [32]
establish a low-dimensional subspace of the state space to which the reduced state is
restricted.

Although model reduction is typically applied to state alone, we propose to reduce
the parameter space as well. The extension of the projection-based model reduction to
the parameter space enables the efficient solution of problems requiring the exploration
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of a high-dimensional parameter space, e.g., in design optimization, distributed control
problems, and statistical inverse problems. For the statistical inverse problem, we
propose a reduced MCMC algorithm that samples in the reduced parameter space
with a Metropolis–Hastings sampler and whose posterior evaluations are computed
via the reduced model. As a result, we make tractable a class of statistical inverse
problems where the forward model is a PDE with distributed parameters.

This paper is organized as follows. In section 2 we describe in detail the statistical
inverse problem, emphasizing the probabilistic characterization of parameter space.
Bayesian inference is introduced, and the inverse problem is formulated. We highlight
the challenges of exploring the posterior using MCMC in the distributed-parameter
PDE setting. Projection-based model reduction in parameter and state is presented
in section 3 in anticipation of our reduced MCMC algorithm, which is described and
analyzed in section 4. In section 5 we demonstrate reduced MCMC on one-dimensional
(1-D) and two-dimensional (2-D) synthetic groundwater inverse problems. Finally, we
make concluding remarks in section 6.

2. Statistical inverse problem. Let P and Y be parameter and output spaces,
respectively, and consider the forward model M : P → Y. For the true parameter
p ∈ P , the model predicts output y ∈ Y, and we make noisy observations yd ∈ Y.
The inverse problem consists of utilizing the noisy observations to infer the parameter.
In the deterministic setting, this process involves regularization and optimization, and
it results in a single-point estimate of the parameter with no measure of uncertainty.
On the other hand, the Bayesian formulation of the statistical inverse problem yields
a conditional probability density πp(p|yd) over parameter space from which one can
compute an estimate and credibility interval.

2.1. Bayesian formulation. The statistical inverse problem is conveniently for-
mulated as one of inference by exploiting Bayes’s rule. Define R+

0 as the set of nonneg-
ative reals. Let γp(p) : P → R

+
0 be the prior probability density over the parameter

space. The prior expresses one’s knowledge of the probabilistic distribution of pa-
rameters before observations are made. Let L(yd,p) : Y × P → R

+
0 be the likelihood

function. The likelihood embeds the map from parameter input to noisy observations
by way of the forward model M and a suitable error model. Provided the output
space is bounded, we write the posterior

(2.1) πp(p |yd) ∝ L(yd,p)γp(p),

which expresses our updated knowledge of the probabilistically observation-consistent
parameters.

The prior γp(p) is selected by incorporating problem-specific information. Akin
to regularization of deterministic inverse problems, the prior can be used to represent
a preference for certain types of parameters. Let N (µ,G) be the multivariate normal
distribution with mean µ and covariance matrix G. In the present work, we employ
a Gaussian process prior with a Gaussian kernel to preferentially treat smooth pa-
rameter fields, i.e., γp(p) ∼ N (0,S) where the ijth element of the covariance matrix
is given by

(2.2) Sij = a exp

{−‖�xi − �xj‖22
2b2

}
+ cδij ,

a formulation that expresses correlation between the discretized parameter at �xi and
�xj according to their Euclidian separation distance. Here, δij is the Kronecker delta
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and a, b, and c are positive scalar parameters of the kernel. If discontinuities are to
be admitted, an outlier process (e.g., gamma or inverse gamma distribution) should
be chosen instead. In problems for which no expertise can be drawn on, a uniform
prior is usually employed [15], although a maximum entropy principle may be more
consistent [24].

The likelihood function establishes the relationship between observations yd and
model-predicted output y(p). It is convenient, and often representative of the physical
process, to consider an additive error model yd = y(p) + e, where e is the output
error usually associated with sensor measurements. Furthermore, we often assume
the errors are unbiased, uncorrelated, and normally distributed with variance σ2,
i.e., e ∼ N (0, σ2I). In this work we do not consider the uncertainty associated
with our model’s potentially inadequate representation of the physical system. These
assumptions result in the likelihood function

(2.3) L(yd,p) = exp

{−‖yd − y(p)‖22
2σ2

}
.

For these particular choices of the prior and likelihood, we obtain the posterior

(2.4) πp(p |yd) ∝ exp

{−‖yd − y(p)‖22
2σ2

− 1

2
‖p‖2S−1

}
,

where ‖p‖2S−1 = −2 log γp(p). Note that under the aforementioned assumptions, the
solution to the statistical inverse problem, i.e., the posterior πp(p |yd), is known up to
a normalizing constant. If the parameter space is very low-dimensional, approxima-
tions to moments of the posterior could be computed by quadrature. For distributed
parameters, this is not feasible; instead, samples must be generated from the posterior
indirectly by MCMC, and moments must be estimated by their discrete analogues.

2.2. MCMC. MCMC was first introduced by Metropolis et al. [30] and was
later generalized by Hastings [19]. A Markov chain with the posterior as its station-
ary distribution is constructed via a random walk. A transition from one state to the
next in the chain is achieved by generating a candidate from the proposal distribu-
tion. The proposal is accepted with certain probability and rejected otherwise. In
the Metropolis–Hastings algorithm, the proposal distribution is subject to very mild
restrictions—any proposal distribution yielding an ergodic Markov chain is acceptable
and automatically has the target as its stationary distribution when the acceptance
ratio is defined appropriately. This generalization opened the door to adaptive algo-
rithms.

Adaptive methods include those that use the chain to modify the proposal distri-
bution [17, 18] and adaptive direction samplers [7, 11] that maintain multiple points
in parameter space. While adaptive methods speed convergence by more efficiently
sampling the parameter space, other methods accelerate the posterior evaluations re-
quired to compute the Hastings ratio at each step. Arridge et al. recently proposed
mesh-coarsening for solving the linear inverse problem [2]. They utilize the Bayesian
formulation to quantify the statistics of the error associated with discretization. Poly-
nomial chaos expansions have also been used in this context [28]. The associated
stochastic spectral methods are used to obtain a surrogate for the posterior which can
be evaluated by computing the terms in a series. The number of terms in this series,
however, scales exponentially with the number of parameters; therefore, stochastic
spectral methods have only been proven for inverse problems with a handful of pa-
rameters [4]. Efendiev, Hou, and Luo introduced a preconditioned MCMC in which
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coarse grid solutions of the underlying PDE were used in a two-stage process to guide
sampling to reduce the number of full-scale computations [10]. Their procedure relies
on a Karhunen–Loève expansion in parameter space to reduce dimensionality.

We are not aware of instances of MCMC algorithms scaling to even thousands
of parameter dimensions for general posteriors. Many problems of interest are three-
dimensional and require multiscale resolution; therefore, the discretized parameter
input space will typically have dimension in the millions. In high-dimensional pa-
rameter spaces, sufficient exploration and maintaining a minimum acceptance rate
have proven challenging for even the most adaptive MCMC schemes. On the other
hand, samplers can be efficiently tuned in low-dimensional parameter spaces. We will
exploit the structure of our problem to systematically identify a parametric subspace
on which to run the MCMC process.

The two computational challenges—sampling in high-dimensional parameter
space and costly forward model evaluations—are addressed simultaneously by pa-
rameter and state model reduction, as we now describe.

3. Parameter and state model reduction. In this section, we classify the
large-scale models of interest and present an algorithm to construct a parameter-
and state-reduced model that maintains fidelity in observable outputs. The steady
parameterized PDEs of interest are discretized and result in a system of algebraic
equations we refer to as the full model. The full model depends on a high-dimensional
parametric input; see section 3.1. In section 3.2 we propose a reduced model that takes
parameter inputs in a low-dimensional subspace of the full parameter space and whose
state must reside in a low-dimensional subspace of the full state space. While a state
basis is necessary for projection in the traditional model reduction framework, here
we require also a basis for the parameter. In section 3.3 we present an algorithm for
the simultaneous construction of these bases.

3.1. Full model. Although we think of our forward model as a map from pa-
rameter space to output space, typical formulations yield models with state space U .
Thus, the forward model may be written more completely M : P → U → Y. We
focus here on models that are linear in the state variables. The output space Y can
be any linear functional of the state; in some cases, we formulate the model such that
the outputs are a subset of the states.

Our interest is in steady linear PDEs discretized in space, e.g., by finite elements,
resulting in a system of algebraic equations of the form

(3.1) A(p)u = f , y = Cu,

where A(p) ∈ R
N×N is the forward operator depending on the parameter p ∈ R

Np ,
u ∈ R

N is the state, f ∈ R
N is the source, C ∈ R

No×N is the observation operator,
and y ∈ R

No is the vector of observable outputs.
In this case, the number of states scales with the number of grid points; therefore,

three-dimensional problems typically have N > 106 discrete states. Furthermore, we
have particular interest in distributed parameters, which also reside on the grid, i.e.,
Np > 106 discrete parameters as well. Although the equations in (3.1) are linear in
state, it should be noted that the map from parameter to state can be highly nonlinear,
as the state depends on the parameter through the inverse of the forward operator.
While the parameter and state are high-dimensional, the outputs are typically few in
number, e.g., No<102.

For models of this type, projection-based model reduction is well-established for
the acceleration of forward model evaluations by reduction in state. Others have
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applied model reduction to the posterior evaluation process in the Bayesian inference
of a heat source in radiation [37], an application to real-time Bayesian parameter
estimation [31], and in optical diffusion tomography [2]. In addition to reduction
in state, reducing in the parameter space is essential for efficient exploration of the
parameter space in many settings including design optimization, distributed control,
and statistical inverse problems.

Next, we define the form of the reduced model and then present an algorithm for
its construction.

3.2. Reduced model. Consider the full model (3.1). We propose the construc-
tion of a reduced modelMr : Pr → Ur → Y whose outputs are accurate but parameter
and state reside in low-dimensional subspaces Pr ⊂ P and Ur ⊂ U , respectively. We
assume that the parameter p and state u can be adequately approximated in the span
of parameter and state bases P ∈ R

Np×np and V ∈ R
N×n, respectively. We obtain

by Galerkin projection a reduced model of the form

(3.2) Ar(pr)ur = fr, yr = Crur,

where

Ar(pr) = VTA(Ppr)V, fr = VT f , Cr = CV,

where Ar ∈ R
n×n is the reduced forward operator depending on the reduced pa-

rameter pr ∈ R
np , ur ∈ R

n is the reduced state, fr ∈ R
n is the projected source,

Cr ∈ R
No×n is the reduced model observation operator, and yr ∈ R

No are the reduced
model outputs. The reduction in parameter space is enforced directly by assuming
p = Ppr.

In traditional state reduction, a key challenge is identification of a low-dimensional
subspace Ur such that full and reduced model outputs are consistent. In a typical
forward problem setting, reduced model accuracy may be desired for a finite set of
parameters. In that case, one should sample those parameters, compute the corre-
sponding states, and utilize the span of the resulting sets to form the basis. For
inverse problems in particular, the parameters over which we desire reduced model
accuracy are unknown—it is precisely these parameters that we wish to infer. In the
absence of additional information, black box methods such as random sampling, Latin
hypercube sampling, and centroidal Voronoi tesselations have been used to sample the
parameter space and derive the state basis. If the parameter space has more than a
handful of dimensions, however, [5] demonstrates greater efficiency over the black box
samplers using a greedy approach [16, 36].

For the parameter- and state-reduced model (3.2), we must also build a basis for
the parameter separately from the basis constructed for the state. We use the simplest
approach, but perhaps also the most reasonable one; we derive the parameter basis
from the set of parameters sampled to construct the state basis. Therefore, for the
parameter basis vectors, we are guaranteed that the reduced model (3.2) will be as
accurate as a reduced model without parameter reduction. This extension comes at
a cost of only the orthogonalization process for the parameter basis. If the parameter
vector is not associated with the discretization of a field quantity and an uncertainty
estimate for a particular element is required, then the reduction may have to be
orchestrated to maintain the structure of the problem. In some cases, reduction of
that parameter may not be advisable. This treatment is problem dependent and is not
addressed in the current paper. Here we are interested in global uncertainty estimates
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of a scalar parameter field that has been represented by a vector of modal coefficients
in a linear nodal basis.

We have described the form of the reduced model, but we have not yet discussed
how to obtain the parameter samples which will define the reduced bases. In the next
section, we describe a goal-oriented, model-constrained greedy approach to sampling
the parameter space to build the reduced model.

3.3. Greedy sampling. A sequence of reduced models of increasing fidelity re-
sults from iteratively building up the parameter and state bases. At each step, we
find the field in parameter space that maximizes the error between full and current re-
duced model outputs, subject to regularization by the prior. Although this approach is
heuristic, it accounts for the underlying mathematical model and observable outputs.
Furthermore, it is tractable even for models (3.1) with high-dimensional parameter
and state spaces.

At each iteration of the greedy algorithm, we must evaluate the full and reduced
models for members of the high-dimensional parameter space. Given that our pa-
rameter and state reduced model (3.2) accepts only reduced parameters as inputs, we
need an additional map from high-fidelity parameters to their reduced counterparts.
Let Ω be the computational domain. Since the parameter in this case is a distributed
quantity, we choose a discretized L2(Ω) projection such that

(3.3) PTMPpr = PTMp,

where M is the mass matrix arising from the finite element discretization. With the
addition of this constraint and the specification of a regularization parameter β, the
kth greedy optimization problem

(3.4) pk = arg max
p∈Pk

J =
1

2
‖y(p)− yr(pr)‖22 −

1

2
β‖p‖2S−1

subject to (3.1), (3.2), and (3.3) is completely defined. The objective function J :
Pk → R is a weighted sum of two terms. The first term measures the disparity
between observable outputs of the full and current reduced model. The second term
penalizes parameters of low probability in a manner consistent with the prior belief
in the statistical inverse problem.

We search for the parameter field in a restricted set Pk ⊂ P which may change
from greedy cycle to greedy cycle. This restriction allows enforcement of additional
constraints on the parameter. For example, take Pk = P⊥ to be the orthogonal
complement of the current parameter basis. Then, in the limit yr(pr) → y(p), the
misfit term goes to zero, and we sample the eigenvectors of the prior covariance in
P⊥. Those eigenvectors are precisely the Karhunen–Loève modes typically used in
practice when parameter reduction is performed in the statistical sampling setting.
Please refer to section 4.2 for further discussion.

Optimization problem (3.4) is a nonconvex PDE-constrained nonlinear optimiza-
tion problem over a high-dimensional parameter space. Since the constraints are
linear, however, we may rewrite (3.4) as an unconstrained problem where we find the
pk that maximizes
(3.5)

J =
1

2

∥∥CA−1(p)f −CV(VTA(P(PTMP)−1PTMp)V)−1VT f
∥∥2
2
− 1

2
β‖p‖2S−1 .

We solve (3.5) with a trust-region Newton method where we provide analytical gra-
dients and a subroutine for the Hessian-vector product. At each outer loop iteration,
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the Newton direction is computed using conjugate gradients (CG) [20, 23]. The ob-
jective function is nonconvex, and we are not guaranteed to find the global optimum
at each iteration. Grid continuation methods are the usual combatant for this is-
sue in high-dimensional PDE-constrained optimization problems [3]. By solving the
optimization problem on a sequence of refined meshes, it is often the case that we
gradually approach the basin of attraction of the global optimum. The solution of
(3.4) is a significant challenge; however, the similarity between (3.4) and a determin-
istic inverse problem formulation can be exploited. We have a plethora of knowledge
and methodology from optimization problems of similar form; see, e.g., [1, 20, 23] and
the references therein. Further, as shown in [5], the computational cost of solving (3.4)
via these methods has an attractive scalability with the dimension of the parameter
space.

To summarize, we present the model reduction procedure in Algorithm 3.1. We
typically terminate the greedy sampling process once a reduction of several orders of
magnitude is achieved in the objective function.

Algorithm 3.1.

Greedy parameter and state model reduction.
1. Initialize parameter basis to a single constant field P = pc, solve (3.1), and

initialize state basis to V = u(pc); set k = 2.
2. Solve the greedy optimization problem (3.4) subject to (3.1), (3.2), and (3.3)

for an appropriate regularization parameter β to find pk and compute the
corresponding forward solution u(pk) using (3.1).

3. Update the reduced model. Incorporate pk and u(pk) into the parameter and
state bases, respectively, by Gram–Schmidt orthogonalization.

4. If converged, stop. Otherwise, increment k and loop to 2.
In the next section, we describe how a reduced model derived using Algorithm 3.1

can be exploited in a reduced MCMC approach to the statistical inverse problem.

4. Reduced MCMC. Motivated by the need for uncertainty quantification in
inverse problem solutions, the difficulty of sampling in high-dimensional parameter
spaces, and the excessive computational cost of forward model solutions, we propose
a reduced MCMC; see Algorithm 4.1. Sampling takes place in the reduced parameter
space, and posterior evaluations are performed by the reduced model. The forthcom-
ing analysis assumes that the forward operator is linear in the parameter, a property
of our target groundwater problem. In that case, online reduced MCMC computa-
tions scale with the reduced dimensions n and np instead of N and Np. The model
underlying the reduced MCMC is derived using Algorithm 3.1.

4.1. Algorithm. Once the reduced model is constructed in the offline phase, it
can be employed at little cost in the online phase, i.e., when we use MCMC to generate
samples from the posterior. Reduced MCMC yields samples in the reduced parameter
space and utilizes a random walk based on the Metropolis–Hastings sampler. Each
posterior evaluation required to compute the Hastings ratio is computed using the
reduced model exclusively. The cost of an MCMC sample scales with the reduced
dimensions n and np, as opposed to the high-fidelity dimensions N and Np. The cost
is independent of N because the Galerkin matrix has dimension n-by-n. The cost is
independent of Np because the forward operator’s dependence on the parameter is
linear; therefore, we can precompute the dependence on each parameter basis vector
and sum the contributions for a given reduced parameter pr. This is a particular
example of the more general offline/online decomposition procedure of reduced basis
methods [36].
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We summarize the reduced MCMC algorithm for a desired number of samples
Ns. Consider a point in the chain pr. The proposal distribution ξ(qr|pr), which may
be a multivariate normal with mean pr and projected prior covariance Sr = PTSP,
is sampled to generate a candidate qr. In the low-dimensional parameter space,
it is not difficult to find a proposal distribution that yields an optimal acceptance
rate. We suspect that a multivariate normal proposal distribution with independent
components can also be utilized successfully in the reduced MCMC.

Algorithm 4.1.

Reduced MCMC.
1. Given a full model (3.1), construct a reduced model (3.2) using Algorithm 3.1.
2. Initialize the Markov chain at p0

r; set i = 1.
3. Generate a candidate from the proposal distribution ξ(pr|pi−1

r ). We recom-
mend ξ ∼ N (pi−1

r ,Sr), where Sr = PTSP is the projection of the prior
covariance onto the reduced parameter space.

4. Compute the acceptance ratio

(4.1) α = min

[
1,

π(pr|yd)ξ(p
i−1
r |pr)

π(pi−1
r |yd)ξ(pr |pi−1

r )

]

by evaluating π(pr|yd) = exp{− 1
2σ2 ‖yd − yr(pr)‖22 − 1

2‖Ppr‖2S−1} using the
reduced model (3.2).

5. With probability α, accept the new candidate, i.e., pi
r = pr; otherwise, reject

the candidate and take pi
r = pi−1

r .
6. If i < Ns, loop to 3; otherwise, stop.

In the next section, we analyze the effect of utilizing a parameter- and state-
reduced model in MCMC.

4.2. Analysis. Although rigorous error bounds exist for projection-based re-
duced models in very specific settings (see, e.g. [16, 21, 31, 36]), such results do not
exist in general. In light of this, error analysis and convergence results are not avail-
able in the statistical setting. On the other hand, we are in a position to provide a
detailed complexity analysis.

Our analysis breaks down into offline and online components. In the offline stage,
we build the reduced model by Algorithm 3.1. To obtain an additional pair of pa-
rameter and state vectors, we must solve the greedy optimization problem (3.4). We
utilize a reduced-space matrix-free inexact Newton-CG algorithm. The gradient g
is computed via adjoint computations which are linear in the number of parameters
Np. Never is the Hessian H constructed and stored; instead, we require only the
action of the Hessian on a vector to compute the Newton direction p̂ as the solution
to Hp̂ = −g. This matrix-vector product requires a sequence of forward and adjoint
solves. We assume that both the number of linear and number of nonlinear itera-
tions are independent of the problem size due to the special structure in the problem
[1, 20, 23]. The full-order MCMC does not have an offline stage.

In the online stage of the full-order implementation, we cannot use traditional
Metropolis–Hastings samplers. Instead, we use the delayed rejection adaptive Metropo-
lis (DRAM) algorithm, which utilizes a limited-history sample covariance in the pro-
posal distribution [17]. Since the sample covariance is dense, the dominant cost is
shared by updating the factorization and evaluating the proposal probability, both of
which cost O(N2

p ). In the online stage of the reduced MCMC, we are able to utilize
the traditional Metropolis–Hastings sampler whose dominant cost O(npn

2) is given
by the posterior evaluation when we must solve for the outputs of the reduced model.
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Table 4.1

Complexity analysis for solution to the statistical inverse problem by MCMC sampling at full
and with reduced MCMC. Here, Np and N are the dimensions of the full parameter and state,
respectively; np and n are the parameter and state dimensions for the corresponding reduced model.
We assume that no greedy samples are redundant such that we require n greedy cycles to build a
reduced model of size n. On average, we take m nonlinear iterations (iters.) to converge the greedy
optimization problem during each greedy cycle. All linear systems are solved by iterative Krylov
methods and take advantage of structure in the spectrum of the matrix operator through appropriate
preconditioning such that the number of iterations is independent of the dimension of the system.

Operation Full Reduced
Offline greedy cycles n

nonlinear iters. m
gradient O(Npnpn2)

linear iters. O(Npnp +Nn)
forward solve O(Np +N)

Subtotal O(mNpnpn3)

Online MCMC samples O(N2
p ) O(n2

p)
proposal O(N2

p ) O(n2
p)

proposal evaluation O(N2
p ) O(n2

p)
posterior evaluation O(Np +N) O(npn2)

Subtotal O(N4
p ) O(n3

pn
2)

Total O(N4
p ) O(mNpnpn3 + n3

pn
2)

In both the full-order and reduced implementations we assume that the number of
samples required to achieve the desired level of accuracy scales with the square of the
number of parameters [33].

A complexity analysis comparing full and reduced MCMC instantiations is pro-
vided in Table 4.1. Asymptotic cost is presented for the offline and online portions.
It is our assumption that we may construct a reduced model with np � Np and
n�N that maintains the integrity of the parameter-output map of the original model.
Therefore, the dominant costs are given by Np and N for each approach. While the
cost of the full-order implementation scales like N4

p , the reduced MCMC scales only
linearly with Np. Furthermore, the online portion of the reduced MCMC is indepen-
dent of the original parameter and state space dimensions. If one has run reduced
MCMC for Ns samples and then decides to collect more samples, the cost of obtaining
higher accuracy in the statistical results will not depend on the full dimensionality of
the problem. Indeed, this is the advantage of the offline/online decomposition.

The reduced MCMC sacrifices accuracy by requiring samples to reside within a
low-dimensional subspace and approximating the output by reduction in state; the
full case, on the other hand, is completely intractable for large Np and N . We now
turn to some discussion regarding the treatment of uncertainty by the reduced MCMC
approach.

Our formulation of the greedy sampling problem represents an attempt to reduce
the maximum error in the outputs between full and reduced models while avoiding
unnecessary sampling of parameters excluded by the prior information. This goal-
oriented approach produces a reduced model that accurately matches the outputs
of the full model over a subset of the parameters with appreciable prior probability.
The greedy objective function (3.4) is knowledgeable about the prior of the statistical
inverse problem in the following manner. If there is a set of parameters that produce
the same output error, the one that will be sampled will be the one with largest prior
probability.
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In section 3.3 we discussed how the regularized greedy formulation (3.4) can be
chosen so that in the limit yr(pr) → y(p), the optimization results in sampling the
Karhunen–Loève modes. However, we comment here that sampling past this limit
may be inefficient. Samples not driven by the misfit in our representation of the
physics amount to parameters for which the data is uninformative in the statisti-
cal inverse setting. The additional directions (i.e., those arising as eigenvectors of
the prior covariance) can be sampled more efficiently using a method such as Rao-
Blackwellization [14, 27].

Although it is not clear how the reduced model treats uncertainty in the nonlinear
setting, in the linear case, a reduced model constructed by Algorithm 3.1 will be a basis
for the parameters about which we are most certain. In this way, the reduced model is
foremost established to approximate the full model in a parameter-output map. As the
dimension of the reduced model grows, its approximation of the likelihood becomes
more accurate, and the reduced-fidelity posterior approaches the full posterior. It
is a significant challenge to obtain a reduced model that both matches full model
output while also spanning the parameters that contribute most significantly to the
uncertainty in the posterior. This topic is the subject of ongoing research.

In the next section, we present numerical results from inverse problems in one
and two spatial dimensions.

5. Results. The governing equations are those of steady flow in porous media.
We specify the problem description in section 5.1. In section 5.2, a parameter- and
state-reduced model is constructed by means of the greedy sampling procedure out-
lined in section 3.3. The reduced MCMC results are compared with inversions based
on the full model in section 5.3. The largest mesh contains 501 degrees of freedom.
We select a modest size in order to make the full inversion tractable, so that we may
compare results with the reduced MCMC algorithm.

It should be noted immediately that the full MCMC results presented in this
section represent the first author’s greatest effort to develop an efficient sampler in
the high-dimensional parameter space with the use of DRAM. In order to obtain a
nonzero acceptance rate, the MCMC chain has to be started near the actual solution,
and the candidates must remain nearby. This process may produce results which are
misleading in accuracy: The full posteriors are not well-explored; in fact, the samples
in the chain remain very close to the maximum a posteriori estimate. The result is
an underprediction of the true variance. The algorithm DRAM should not be blamed
for this inadequacy; sampling in such a high-dimensional parameter space is an open
problem in this area—precisely the motivation for our reduced MCMC methodology.

5.1. Problem description. The governing equations are those of steady flow
in porous media. Let u(�x) be the pressure head, K(�x) be the hydraulic conductivity,
and f(�x) a recharge term. Given a field K, the pressure head u is given by

−�∇ · (K�∇u) = f in Ω,

K �∇u · �n = 0 on ΓN,

u = 0 on ΓD,

where Ω is the computational domain with boundary ∂Ω = ΓD∪ΓN and ΓD∩ΓN = ∅,
ΓD and ΓN are Dirichlet and Neumann boundaries, respectively, and �n is the outward-
pointing unit normal. For well-posedness of the forward problem, we require K > 0 in
Ω; thus it is convenient to work with logK as the parameter. Our forward model also
includes a set of outputs yi = u(�xi), i = 1, 2, . . . , No, corresponding to the pressure
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(a) (b)

Fig. 5.1. For the N = 494 test case in 2-D, the (a) sensor array and (b) recharge term f .

head at a set of sparsely distributed sensors. When discretized, e.g., by finite elements,
the forward model can be expressed in the form (3.1) where u and p are the discretized
forms of u and logK, respectively.

We present results for test problems in one and two spatial dimensions. In one
dimension, Ω = (0, 1], ΓD = {x|x = 0}, and ΓN = {x|x = 1}. The sensors are
distributed evenly throughout the domain. The source term is a superposition of
three exponentials

f(x) =

3∑
i=1

αi exp

{
− (x− μi)

2

β2
i

}
,

where α = (1900, 5100, 2800), μ = (0.3, 0.6, 0.9), and β = (0.01, 0.05, 0.02). In two
dimensions, we have Ω = [0, 1]2, ΓD = {(x, z)|x ∈ {0, 1}}, and ΓN = {(x, z)|z ∈
{0, 1}}. For each of the test problems, we assume that the sensor array and recharge
term f are fixed. In Figure 5.1 we show the sensor array in the domain along with
the recharge term

f(x, z) = 15 exp

{
−‖(x, z)− (0.5, 0.5)‖2

0.32

}
+ 19 exp

{
−‖(x, z)− (0.7, 0.3)‖2

0.32

}

for the N = 494 2-D test case. In each case, we specify less than 10% of the nodes as
sensors, and in the 2-D problems, they are chosen to be roughly aligned vertically to
simulate a set of boreholes in the geophysical setting.

5.2. Reduced model performance. We now demonstrate the construction of
the reduced model by the greedy sampling procedure described above. The greedy
sampling problem (3.4) is solved at every iteration of the procedure using a trust-
region, interior-reflective, inexact Newton method [8, 9]. We provide the gradient and
the Hessian-vector product as required by the optimizer with a series of forward and
adjoint solves. The reader is referred to [26] for details. In this case, the Gaussian
process prior adds sufficient regularity to the optimization problem; however, for a
different choice of the prior, one may need to employ grid continuation [3].

For the sake of brevity, we present results from the greedy sampling procedure only
for the 2-D case with N = 494. In Figure 5.2, we plot the parameter and state basis
vectors obtained by Algorithm 3.1. We initialize the procedure by first sampling the
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Fig. 5.2. Ten orthogonalized parameter and ten orthogonalized state basis vectors derived using
the greedy sampling algorithm (3.4). In the first two columns, the first five pairs; in the last two
columns, the last five pairs. In each pair, the parameter is shown on the left, and the state on the
right.

Fig. 5.3. The greedy objective function value (3.4) versus the greedy cycle index for the 2-D
problem with N = 494 variables. We observe a decreasing trend. The procedure is stopped when the
objective function has decreased by three orders of magnitude; see Algorithm 3.1.

constant parameter p = 1. When we do so, we obtain the first parameter basis vector.
Then we solve the full model to obtain u(p), which is the first state basis vector. On
each subsequent iteration we follow the same process with p determined by solving
the greedy sampling problem (3.4). The new basis vectors are incorporated into the
basis via Gram–Schmidt orthogonalization. As the iteration proceeds, we observe a
decreasing trend in the objective function; see Figure 5.3. When the objective function
has decreased by three orders of magnitude, we conclude the process.

Although we have included the prior information from the statistical inverse prob-
lem as a regularization penalty, the greedy process is deterministic. We now consider
a statistical measurement of the accuracy of the reduced model. For the 2-D test
case with N = Np = 494, we select 1,000 conductivity fields at random from our
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Table 5.1

Performance statistics for the full model and reduced models of dimension five and dimension
ten for the N = Np = 494, 2-D test case. The ouput vectors y, yr5 , and yr10 correspond to the
full model, the reduced model of dimension five, and the reduced model of dimension ten. For 1,000
random samples from the prior, we present the sample mean and sample variance for the �2-norm
of the outputs and the output errors. As expected, the reduced model with more basis vectors more
accurately replicates the statistics of the full model predicted outputs.

�(·) var(·)
‖y‖2 1.5754 0.1906
‖yr5‖2 1.5756 0.1943
‖yr10‖2 1.5754 0.1906

‖y − yr5‖2 2.3986 × 10−2 2.2284 × 10−4

‖y − yr10‖2 3.2796 × 10−3 3.9419 × 10−6

Gaussian process prior and compute the predicted outputs using the full model and
the reduced models of dimension five and dimension ten. Each model estimates the
pressure head at the 49 sensors in the domain; see Figure 5.1(a). Let y, yr5 , and
yr10 be the vectors of outputs for the full model, the reduced model of dimension five,
and the reduced model of dimension ten, respectively. In Table 5.1, we present the
sample mean and sample variance for ‖y‖2, ‖yr5‖2, ‖yr10‖2, and the error in outputs
‖y − yr5‖2 and ‖y − yr10‖2. In this case, the statistics of the outputs of the reduced
model adequately match those of the full model; however, it is important to note that
there may be parameter values (e.g., values in the tails of the prior distribution) for
which the reduced model is inaccurate. As expected, the larger reduced model is more
accurate—as the number of parameter and state basis vectors increases, the reduced
model tends toward the full model.

5.3. Inverse problem solution. The following is the experimental procedure.
Given a certain discretization of the domain, we construct the prior probability density
γp(p) ∼ N (0, S) using the Gaussian kernel (2.2) for the choices a = 0.1, b = 0.8, and
c = 10−8. We employ greedy parameter and state model reduction as described above
to determine a reduced model. Then we generate synthetic data.

First, we select a hydraulic conductivity field from the prior at random. We solve
the forward model on the given discretization using Galerkin finite elements with
piecewise linear polynomial interpolation. The output data are generated by selecting
the values of the states at a small subset of the mesh nodes and then corrupting the
data with noise drawn from a multivariate normal distribution N (0, σ2I). In these
cases, we choose σ = 0.01.

Once the data are generated, we solve the statistical inverse problem in two ways.
Samples are generated from the posterior πp(p|yd) using the full model and adaptive
sampling. The starting location for the chain is given by a weighted combination of
the true hydraulic conductivity and another sample drawn from the prior. Although
this is unfairly biased in the direction of the performance of the full instantiation, it is
necessary for a successful sampling process—without this, sampling with MCMC at
full order is nearly impossible even for modest problem sizes. Our interest is primarily
in evaluating the accuracy of the reduced MCMC results; selecting an appropriate
initial sample is necessary to complete that task. Note that we are able to solve
the full statistical inverse problem in this case due to our choice of problem size.
We obtain a benchmark against which we may test the performance of the reduced
MCMC approach.
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Fig. 5.4. Statistical inversions for the 1-D model problem for two mesh discretizations, (left)
N = 51 and (right) N = 501. On the top we present results from the full inversion; the reduced
MCMC results are on the bottom. The solid line is the parameter used to generate the data, the
dash-dot line is the sample mean, and the dashed lines denote the sample mean plus and minus two
pointwise standard deviations.

With reduced MCMC, we do not require that the seed of the chain be near the
true parameter because the burn-in time is minimal in the reduced parameter space
for a well-tuned sampler. We initialize by drawing at random from the projected
prior distribution. The posterior evaluations are given by solutions to the reduced
model (3.2). The proposal distribution is defined on the reduced parameter space,
and therefore all samples in the chain are of reduced dimension. For the test cases
presented herein, we use a multivariate normal distribution whose mean is the previous
sample and whose covariance is the product of a scaling factor and the projected prior
covariance. We tune the scaling factor, with negligible effort, to provide an acceptance
rate between 20% and 30% [6, 33].

We utilize the sample mean and pointwise variance (diagonal of the sample co-
variance) as the metric to assess our inversion. In the following figures, we plot the log
hydraulic conductivity utilized to generate the data, the sample mean, and the sam-
ple mean plus or minus two pointwise standard deviations. In Figure 5.4, we present
results from the 1-D model problem for two mesh discretizations, N = Np = 51 and
N = Np = 501.

In each case, the reduced MCMC credible interval envelopes the true parameter.
For the 1-D N = Np = 51 test case, reduced MCMC underestimates, with respect to
the full inversion, the uncertainty in the parameter near the right boundary. In the
1-D N = Np = 501 case, the reverse is true—reduced MCMC appears to overestimate
the uncertainty. However, it must be noted that the full model solution appears to
predict an unrealistically small credible interval. This may be a result of a combination
of two factors: (1) the starting location’s proximity to the true parameter, and (2)
the small length-scale required to achieve acceptances in MCMC for high-dimensional
cases. Together, these factors may have resulted in a short-sighted sampler; that is,
one that does not sufficiently explore the posterior. The increase in uncertainty near
the right boundary, where we apply Neumann conditions, is consistent with results
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Table 5.2

Number of full model degrees of freedom, number of outputs, reduced model degrees of freedom
(– indicates the absence of a reduced model) and offline, online, and total time required to generate
the results for the 1-D test cases on a DELL Latitude D530 with Intel Core 2Duo at 2 GHz. The
offline time denotes the CPU time required to solve five iterations of the greedy sampling problem
with Matlab’s fmincon. In the MCMC simulation, the first 10% of the samples were discarded as
burn-in.

N = Np No n = np
Offline time
(sections)

Samples
Online time
(seconds)

Total time
(seconds)

51 5 – – 500,000 1.05× 103 1.05× 103

51 5 5 3.98× 102 150,000 1.60× 102 5.58× 102

501 25 – – 500,000 2.43× 104 2.43× 104

501 25 5 7.24× 103 150,000 2.53× 102 7.50× 103

Table 5.3

Number of full model degrees of freedom, number of outputs, reduced model degrees of freedom (–
indicates the absence of a reduced model) and offline, online, and total time required to generate the
results for the 2-D model problems on a DELL Latitude D530 with Intel Core 2Duo at 2 GHz. The
offline time denotes the CPU time required to solve n− 1 iterations of the greedy sampling problem
with Matlab’s fmincon. In the MCMC simulation, the first 10% of the samples were discarded as
burn-in.

N = Np No n = np
Offline time
(seconds)

Samples
Online time
(seconds)

Total time
(seconds)

59 5 – – 500,000 1.10× 103 1.10× 103

59 5 5 2.04× 101 150,000 1.57× 102 1.77× 102

494 49 – – 500,000 1.67× 104 1.67× 104

494 49 5 4.69× 103 200,000 3.32× 102 5.02× 103

494 49 10 1.04× 104 200,000 4.92× 102 1.09× 104

in [29]. There, Neumann conditions were applied on either end of a 1-D interval and
increases in the standard deviation were observed at both ends.

Table 5.2 shows the computing time for each case. We record the offline, online,
and total time for each run. The offline time corresponds to the computational effort
required for the greedy parameter and state model reduction. The performance benefit
we obtain is due to a dramatic decrease in the online time, which corresponds to the
MCMC sampling procedure. In the full MCMC, we utilize the DRAM algorithm to
achieve a reasonable acceptance rate. For reduced MCMC, we can achieve optimal
acceptance rates [33] using a Metropolis–Hastings sampler. We achieve a factor of
two speedup in the N = 51 test problem and a factor of three in the N = 501
test problem. For these 1-D results and the 2-D results presented in Table 5.3, our
observed computing times are not consistent with the asymptotic analysis in Table 4.1
for two reasons. First, to make feasible comparisons with the full implementation, the
problem dimensions are moderate, and therefore are not in the asymptotic regime.
Secondly, the overhead offline cost of optimization for the greedy sampling problem
in Matlab does not scale efficiently with problem dimension, as it would, e.g., for a
C implementation. In that case, we expect that the savings will increase dramatically
with the dimension of the problem.

We present similar results for the 2-D model problem. We present timings for two
cases, N = Np = 59 and N = Np = 494, but we show results for the N = Np = 494
case only. The true hydraulic conductivity field is plotted in Figure 5.5. In Figure 5.6,
we plot the lower bound of the credible interval, the mean, and the upper bound of
the credible interval from left to right.
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(a) (b) (c)

Fig. 5.5. For the 2-D test case N = Np = 494, (a) the parameter field used to generate the data
and its projection onto the reduced parameter space of dimension, (b) np = 5, and (c) np = 10.

Fig. 5.6. The results of the MCMC solution to the 2-D N = Np = 494 test case. On the left
and right, respectively, we plot the lower and upper bounds of the ±2σ credible interval. The mean
is shown in the center. The actual parameter field is shown in Figure 5.5.

Consider reduced MCMC results for reduced models with parameter and state
dimensions of n = np = 5 and n = np = 10. We plot the L2(Ω) projections of the
true parameter to these reduced parameter spaces in Figures 5.5(b) and 5.5(c). It
is clear that the first five basis vectors are insufficient to properly capture the true
parameter, but with ten basis vectors, we match the true parameter almost exactly.
The corresponding results from reduced MCMC are shown in Figures 5.7 and 5.8,
respectively.

For each set of results, we calculate the relative L2(Ω) error in each of the three
statistics of interest: the mean, and the upper and lower bounds of the credibility
interval. The error is calculated with respect to the full MCMC solution. We find
that our reduced model of size n = np = 5 produces relative errors in the range
35%–37%, whereas the higher fidelity reduced model n = np = 10 has relative errors
in the range 12%–17%. We expect that these errors will continue to decrease as the
dimension of the reduced model increases.

From these results, we have demonstrated that as the basis becomes richer, we
are better able to characterize moments of the posterior with reduced MCMC. In this
case, we have reduced the problem from N = 494 to np = 10 parameters and n = 10
states. We expect the number of parameter and state dimensions required to achieve
an adequate solution to scale with the complexity of the physics, but not with the
dimension of the underlying discretization.

In Table 5.3 we present the CPU timings for the runs in 2-D. We achieve about
one order of magnitude speedup in theN = 59 case in total time. In the N = 494 case,
the greedy sampling problem becomes significantly more challenging. A speedup of
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Fig. 5.7. The results of the MCMC solution to the 2-D N = Np = 494 test case with reduction
to n = np = 5. On the left and right, respectively, we plot the lower and upper bounds of the
±2σ credible interval. The mean is shown in the center. The actual parameter field is shown in
Figure 5.5(a). For reference, we show the projected actual parameter field below in Figure 5.5(b). In
comparison to the full MCMC solution, these results have a relative L2(Ω) error of 35.4%, 35.7%,
and 36.9%, from left to right.

Fig. 5.8. The results of the MCMC solution to the 2-D N = Np = 494 test case with reduction
to n = np = 10. On the left and right, respectively, we plot the lower and upper bounds of the
±2σ credible interval. The mean is shown in the center. The actual parameter field is shown in
Figure 5.5(a). For reference, we show the projected actual parameter field below in Figure 5.5(c). In
comparison to the full MCMC solution, these results have a relative L2(Ω) error of 16.6%, 12.2%,
and 16.3%, from left to right.

almost two orders of magnitude is observed in online time, but only a 35% reduction
in total time.

It is important to note that our method targets moments of the posterior, i.e.,
integrals that may be estimated by their discrete analogues. It is possible to obtain
uncertainty estimates for individual parameters by projecting reduced MCMC samples
back up to the full-dimensional parameter space by premultiplication of the parameter
basis P. However, the estimate of such localized uncertainty may not be predicted
well by our approach, which is designed for inferring global quantities. If such a
localized quantity is required, the reduced model construction should be modified
(see section 3.2 for related discussion).

6. Conclusion. Bayesian statistical inverse problems are an outstanding chal-
lenge for forward models consisting of PDEs with distributed parameters. While the
complexity of a posterior evaluation can be reduced by a traditional state-reduced
model, efficient sampling in the high-dimensional parameter space remains an issue.
To address these issues, we propose an extension to a parameter- and state-reduced
model which maintains the accuracy of output predictions. In the reduced parameter
space, traditional, nonadaptive Metropolis–Hastings samplers can be utilized success-
fully.
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This reduced MCMC approach provides a systematic method for solving statisti-
cal inverse problems involving PDEs with high-dimensional parametric input spaces—
a class of problems for which the full statistical inverse problem is beyond our current
means. In theory, the method scales independently of the fineness of the PDE dis-
cretization, but instead depends only on the complexity of the physics. Our method
can be applied to problems with many more degrees of freedom, but we cannot com-
pare the results to full calculations because MCMC becomes prohibitively expensive
in that setting.

We have presented promising results for prediction of the mean and credibility
interval for some simple test problems. An important direction for future research is
the establishment of error bounds on the entire posterior probability density function,
which may be required in the decision-making, engineering design, or optimal control
settings.
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