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This paper develops a multi-information source formulation for aerospace design under uncertainty problems. As

a specific demonstration of the approach, it presents the optimization under uncertainty of an advanced subsonic

transport aircraft developed to meet the NASAN� 3 goals and shows how the multi-information source approach

enables practical turnaround time for this conceptual aircraft optimization under uncertainty problem. In the

conceptual design phase, there are often uncertainties about future developments of the underlying technologies. An

aircraft design that is robust to uncertainty is more likely to meet performance requirements as the technologies

mature in the intermediate and detailed design phases, reducing the need for expensive redesigns. In the particular

example selected here to present the newapproach, themulti-information source approachuses an information-reuse

estimator that takes advantage of the correlation of the aircraft model in the design space to reduce the number of

model evaluations needed to achieve a given standard error in the Monte Carlo estimates of the relevant design

statistics (mean and variance). Another contribution of the paper is to extend the approach to reuse information

during trade studies that involve solving multiple optimization under uncertainty problems, enabling the analysis of

the risk–performance tradeoff in optimal aircraft designs.

Nomenclature

A�ω� = random variable representing the
output quantity of interest

ai, ci = ith sample of the random variables A�ω�
and C�ω�, respectively

�an, �cn = regular Monte Carlo estimators for the
expectation of random variablesA�ω� andC�ω�,
respectively, using n samples

bi = ith sample in the one-pass algorithm for
computing the variance

C�ω� = auxiliary random variable used as the control
variate by the information-reuse estimator

E�A�ω�� = expectation of random variable A�ω�
f = objective function for the general optimization

under uncertainty problem
f̂, ĝ = estimators of f and g, respectively, by replacing

the statistic of interest with an estimator
g = inequality constraint function for the general

optimization under uncertainty problem
k = index for the current optimization iteration
l = index for the past optimization iteration used

by the information-reuse estimator
M = numerical model for the optimization under

uncertainty problem
n = number of samples
ninit = initial number of samples
p = amount of computational effort in terms of

the number of model evaluations
PFEI = payload fuel energy intensity, a measure of

fuel burn per unit payload per unit range,
kJ∕�kg · km�

reqi = ith performance requirement for D8 aircraft
expressed as an inequality constraint

sA = statistic of interest for random variable A�ω�
sC = statistic of the auxiliary random variable C�ω�
ŝA = information-reuse estimator of statistic

of interest sA
ŝC = estimator of the statistic of the auxiliary

random variable sC
~sA = classical control variate estimator

of statistic of interest sA
U�ω� = vector of random variables representing

the uncertain model parameters
u = vector of a realization of U�ω�
xk = vector of design variables at

optimization iteration k
xL, xU = lower and upper bounds on design

variables, respectively
α, γ = parameters in the control variate method
η = ratio of estimator variances
λ = number of standard deviations from

the mean for inequality constraints
ρAC = correlation coefficient between the

random variables A�ω� and C�ω�
ρ̂AC, σ̂A, γ̂, η̂ = estimators of ρAC, σA, γ, and η, respectively,

computed using ai, ci for i � 1; : : : ; n
σ2A, σ

2
C = variances of the random variables

A�ω� and C�ω�, respectively

I. Introduction

T HE D8 aircraft concept was developed at the Massachusetts
Institute of Technology, Aurora Flight Sciences, and Pratt and

Whitney as part of a NASA-sponsored project to identify enabling
technologies and innovative configurations that could allow a sub-
sonic commercial transport aircraft to meet the N � 3 goals by the
year 2035 [1]. The goals include 70% reduction in fuel burn, 71 dB
reduction in effective perceived noise level, and 75% reduction in
landing and takeoff NOx emissions relative to the current generation
of Boeing 737-800 aircraft. The D8 aircraft concept, rendered in
Fig. 1, is in the same class as the Boeing 737-800, carrying 180 pas-
sengers over a range of 3000 n mile. The highlights of its features
include engines that ingest the fuselage boundary layer, wide lift-
generating “double-bubble” fuselage as illustrated in Fig. 2 [2],
engine noise shielding by the fuselage and vertical tails, new
composite materials, advanced engine thermodynamic cycle, and
active load alleviation [1]. Many of these advanced technologies are
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still in development, and their expected benefits can only be predicted
based on a combination of historical projections, preliminary
simulations, and industry expert evaluations. Therefore, there are
uncertainties about the effects of each of these technologies that can
impact the overall performance of the aircraft. This paper demonstrates
an approach developed to account for uncertainties of this kind and
hedge against the risks that they represent during the design process. In
other words, we optimize the D8 conceptual design to exploit the
benefits of the advanced technologies while being insensitive to
variations caused by the uncertain future developments of these
technologies. The goal is to achieve a robust conceptual aircraft design
withminimal need for costly redesigns in the future as the technologies
mature over time and their actual benefits are realized.
The approach adopted here to account for uncertainty is based on

posing the aircraft design problem as an optimization under
uncertainty problem. By accounting for uncertainties in key
parameters via rigorous uncertainty analysis, this formulation also
has the potential to reassess the conservatism levels of commonly

used safety factors and even reconsider the general safety factor
approach in the face of emerging technologies. In this formulation,
we distinguish between two types of inputs to the problem: design
variables, whose values are controlled by the optimizer, and
preassigned model parameters, whose values are imposed from the
start and not subject to change by the optimizer [3]. In this work,
we account for the uncertainties in the imposed values of the
model parameters by representing them as random variables with
probability distributions based on the best available estimates of the
uncertainties in the technologies. Probabilistic treatments of
uncertainties in an aerospace design setting have been investigated
in the past, using methods such as robust design simulation [4].
Although a probabilistic formulation of the design under uncertainty
problem offers flexibility in the quantification of the uncertainties, it
can be computationally expensive to solve accurately.
Because the performance metrics of the aircraft (typically outputs

of a numerical simulationmodel) are functions of the designvariables
and the uncertain model parameters, in our formulation they are also

Fig. 1 Rendering of the D8 aircraft ([1] Fig. 1).

737−800

D8.x

11

D8.x
D8.0

D8.0

9

737−800

D8.2

Fig. 2 Comparison of the D8 aircraft and the Boeing 737-800 aircraft ([2] Fig. 22).
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random variables. We formulate the optimization under uncertainty
problem based on the statistics of the performance metrics (e.g., their
means and variances). In most cases, the statistic of a performance
metric cannot be calculated exactly. Therefore, its value must be
approximated numerically. The approximated value is known as the
estimator of the statistic, and the approximation error is known as the
estimator error. Computing this estimator can be computationally
expensive; many evaluations of the numerical simulation model may
be required to achieve an acceptably low estimator error. In addition,
to solve an optimization under uncertainty problem, the statistics of
the performance metrics are needed at many points in the design
space. Therefore, the estimators must be computed many times,
further exacerbating the computational cost. Reducing the number of
model evaluations needed in these computations is critical for wider
adoption of optimization under uncertainty during the aircraft design
process.
One approach for reducing the computational cost of optimization

under uncertainty is to break the nested structure of the problem by
introducing surrogate models (e.g., data-fit models) at various levels
of the problem formulation [5]. The challenge is in managing the
quality of the data-fit models and preventing the optimization routine
from exploiting weaknesses in the surrogates [6]. Polynomial-based
uncertainty quantification techniques, such as stochastic collocation,
can also be applied to the optimization under uncertainty setting by
extending the polynomial expansion to include both the design
variables and uncertain parameters. However, the increased dimen-
sionality can make it costly to construct the polynomial expan-
sion [7].
In this work, we employ Monte Carlo simulation to estimate the

statistics of the aircraft performance metrics because it is applicable
to black-box numerical models, scalable to problems with a large
number of uncertain parameters, easily parallelizable, numerically
robust, and straightforward to implement. Because of the (pseudo)
random nature of Monte Carlo sampling, the value of the
Monte Carlo estimator is itself also random. The error in the
Monte Carlo estimator is characterized by the variance of the esti-
mator. However, the convergence rate of Monte Carlo simulation is
slow, and many model evaluations are needed to achieve an
acceptably low estimator variance. Ng [8] and Ng and Willcox [9]
proposed a multi-information source approach to reduce the
computational cost by leveraging approximate sources of infor-
mation to estimate the statistics of interest. The method is based on
the control variate technique for reducing thevariance ofMonteCarlo
estimators by making use of the correlation between the random
variable of interest and an auxiliary random variable called the
control variate [10,11]. This control variate represents an additional
source of information. For example, if the random variable of interest
is the aircraft performance metric based on the output of a numerical
simulation model at a particular design point, then the control variate
could be the output of a lower-fidelity approximation of this
numerical simulation model. In this paper, we use the control variate
technique to formulate a multi-information source approach to air-
craft conceptual design under uncertainty. We consider the particular
case where the control variate is defined using the output of the
numerical simulation model at a previously evaluated design point;
thus, we refer to this new estimator as the “information-reuse
estimator.”
There have been other recent works on extending the control

variate framework to incorporate different kinds of approximate
information. The multilevel (or multigrid) Monte Carlo method
solves stochastic differential equations by combining multiple levels
of coarse discretizations as control variates [12,13]. However, the D8
aircraft optimization under uncertainty problem uses a black-box
numerical model that lacks the mathematical structure of stochastic
differential equations exploited by the multilevel Monte Carlo
method. The reduced-basis control variate Monte Carlo method
makes use of control variates that are precomputed offline to reduce
the cost of online estimations of the statistics of interest [14,15].
Although our multi-information source approach also makes use of a
database of control variates, the database is built-up online during the
course of optimization under uncertainty; there are no offline

precalculations. Finally, the stacked Monte Carlo method uses
supervised learning to create data-fit models as control variates
during Monte Carlo simulation [16]. Instead of creating data-fit
surrogates, we simply make use of model evaluations at nearby
design points, readily available during the course of optimization
under uncertainty, as the surrogates.
In this work, we show how our multi-information source approach

can be applied in a typical aerospace design setting. Specifically, we
show how the information-reuse estimator can be formulated to solve
an optimization under uncertainty problem, and we demonstrate that
the approach enables practical turnaround time for the D8 aircraft
optimization under uncertainty problem. We extend the multi-
information source approach to the case of performing trade studies
that involve solving multiple optimization under uncertainty
problems. Our method leads to computational speedups that con-
tribute an important step toward making a Monte Carlo-based
consideration of uncertainties a computationally feasible part of the
aircraft conceptual design process.
Section II presents the D8 aircraft optimization under uncertainty

example problem. Section III presents the information-reuse
estimator and discusses its implementation in the multi-information
source approach to solving a general optimization under uncertainty
problem. Section IVapplies the multi-information source method to
the D8 aircraft optimization under uncertainty example problem
and demonstrates computational savings relative to the regular
Monte Carlo approach. Section V concludes the paper.

II. Problem Setup

The numerical simulation model for this problem is the Transport
Aircraft System Optimization (TASOPT) software [17]. It is a
multidisciplinary tool for aircraft sizing and mission performance
analysis developed for the N � 3 project with modules in aero-
dynamics, structural loads and weights, engine cycle analysis, and
trajectory simulation. To support the conceptual design of the D8
aircraft with a step change in technology, TASOPT is developed from
first principles using low-order physics rather than from empirical or
statistical correlations. This allows TASOPT to capture improve-
ments beyond incremental changes from past aircraft that are needed
to meet the ambitious N � 3 goals. This paper considers the
optimization of the design of the D8 aircraft subject to randomness in
the values of the TASOPT model parameters representing the un-
certainties in the advanced technologies.
Given a set of design variables (representing high level geometric,

aerodynamic, and engine cycle parameters) and a realization of the
uncertain (random) model parameters, TASOPT solves a set of
governing equations to generate a feasible aircraft. Other variables
such as the detailed sizing and positional parameters of structural
members are determined by the governing equations to satisfy
internal equality constraints in structural loads, aircraft stability,
engine performance, flight trajectory, etc. For example, in the
structural module, the skin, stringers, and frames are sized to meet
bending and torsion loads on the fuselage. The wing spar is sized to
meet the bending moments. The sizes and positions of the primary
structure along with those of the secondary components contribute to
the overall aircraft weight and moments. The wing area is sized to
balance the weight at the given lift coefficient, and the wing position
is adjusted to satisfy the stability margin. Similarly, in the engine
module, engine cycle analysis is used to size the engine for the start-
of-cruise thrust requirement and to determine the weight of fuel
needed for the flight profile. For the purpose of the D8 aircraft
optimization under uncertainty study, these and other governing
equations (see [17] for a full description) are solved simultaneously
within TASOPT as a black-box numerical model.
The D8 aircraft mission is to carry 180 passengers over a range of

3000 nmile. The optimization under uncertainty problem considered
in this paper has eight design variables (x) representing the wing
geometry and cruise conditions. Their initial values (x0) and bounds
(xL and xU) are listed in Table 1. Trade studies conducted during the
N � 3 project determined that a slower cruise Mach number of 0.72
is a good balance between lower fuel burn and impacts on airline
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operations and passenger experience [1]. Therefore, the cruise Mach
number is fixed at 0.72 and is not part of the design space. The design
variables in Table 1 are consistent with those used in the conceptual
design of theD8 aircraft in theN � 3 project except that engine cycle
variables including the fan pressure ratio, the bypass ratio, and the
turbine inlet temperature are considered fixed. Note that the
definition of the conceptual design problem here is not aimed at
obtaining comprehensive conceptual design results for the D8
configuration to industry standards. It is constructed to be technically
realistic and rich enough to allow both an evaluation of the new
proposed approach to design under uncertainty aswell as exploratory
insights into the nature of the D8 concept design.
The 19 model parameters listed in Table 2 are parameters in the

TASOPT low-order physicsmodels whose nominal values for the D8
aircraft were chosen in the N � 3 project to reflect the predicted
improvements in each of the corresponding technologies. For the
optimization under uncertainty problem, we account for the un-
certainties in these parameters by representing them as random
variables: U�ω�, ω ∈ Ω where Ω is the sample space. The range of
values of these uncertain model parameters are obtained from a
variety of sources. Ranges formaterial properties, turbine blademetal
temperature, and engine overall pressure ratio are based on the
technology maturation roadmap and risk assessment reported in the
N � 3 project [1,17]. Ranges for the excrescence drag factor are
based on Engineering Sciences Data Unit (ESDU) data [18]. Ranges
for the engine cooling parameters are based on literature on cooling-
flow models [19,20]. Ranges for the remaining parameters are based

on best estimates by subject matter experts in the D8 aircraft N � 3
team. Given the nominal values and ranges for the uncertain model
parameters, we chose triangular distributions with distribution
parameters listed in Table 2 to model the uncertainties. Detailed
statistical elicitation methods [21] would be another approach to
select probability distributions for the uncertain model parameters;
this is an area of active research and is beyond the scope of this paper.
The design metric is the fuel burn expressed as the payload fuel

energy intensity (PFEI): the energy of the fuel used per unit payload
and unit range. For the optimization under uncertainty problem, the
objective function is defined as the expected fuel burn. As described
previously, given the vector of design variables x and a realization u
of the uncertain model parameters U�ω�, TASOPT solves the
governing equations to satisfy internal constraints for the aircraft.
There are four additional performance requirements that are treated
externally as inequality constraints for the optimization problem. In
the deterministic case, these constraints are (in their nonnormalized
form):

req1�x; u� � balanced field length − 4995 ft ≤ 0 (1a)

req2�x;u� �fuelvolume−90%of internalwingvolume≤0 (1b)

req3�x;u� � span length − 117.5 ft ≤ 0 (1c)

req4�x;u� � 0.015 − top-of-climb gradient ≤ 0 (1d)

where the top-of-climb gradient is the slope of the flight trajectory at
the end of the climb phase.In the presence of randomness where u is a
realization ofU�ω�, there is a risk that the performance requirements
would not be met.‡ We require that the performance requirements
be satisfied for up to λ standard deviation from the mean. Therefore,
the D8 aircraft optimization under uncertainty problem is for-
mulated as

min
xL≤x≤xU

E�PFEI�x;U�ω���

s:t: E�req1�x;U�ω��� � λ
���������������������������������������
Var�req1�x;U�ω���

p
≤ 0

E�req2�x;U�ω��� � λ
���������������������������������������
Var�req2�x;U�ω���

p
≤ 0

E�req3�x;U�ω��� � λ
���������������������������������������
Var�req3�x;U�ω���

p
≤ 0

E�req4�x;U�ω��� � λ
���������������������������������������
Var�req4�x;U�ω���

p
≤ 0 (2)

Table 1 Initial values, bounds, and optimal values of the D8 aircraft design variables

Variable Initial value Lower bound Upper bound Case 1 optimum Case 2 optimum

Cruise lift coefficient 0.71092 0.3 1.0 0.70950 0.69863
Wing aspect ratio 17.07 5 30 16.597 16.476
Wing sweep, deg 17.757 10 30 18.119 18.713
Wing thickness at root 0.13441 0.08 0.20 0.14369 0.14179
Wing thickness at break and tip 0.10079 0.08 0.20 0.10178 0.10198
Wing cruise lift distribution fraction at break 1.136 0.5 1.5 1.1533 1.1429
Wing cruise lift distribution fraction at tip 1.2645 0.5 1.5 1.2981 1.2716
Start of cruise altitude, m 11,784 10,000 13,000 11,793 11,757

Table 2 Triangular distributions of the 19 uncertain model
parameters for the D8 aircraft

Random variable
Lower
limit

Peak Upper
limit

Vertical load factor for wing bending 2.3 2.5 3.0
Secondary wing components weight
fraction

0.49 0.54 0.59

Secondary engine components weight
fraction

0.0 0.1 0.2

Material yield stress multiplier 0.8 1.0 1.2
Material density, lb∕in3 0.0504 0.0560 0.0616
Wing excrescence drag factor 1.019 1.025 1.038
Tail excrescence drag factor 1.019 1.025 1.038
Fuselage excrescence drag factor 1.03 1.04 1.08
Fuselage boundary-layer ingestion
fraction

0.2 0.4 0.6

Turbine blade metal temperature, K 1450 1500 1550
Turbine cooling Stanton number 0.050 0.065 0.080
Turbine cooling heat transfer efficiency 0.6 0.7 0.8
Turbine cooling film effectiveness factor 0.3 0.4 0.5
Engine overall pressure ratio 45 50 52
Fan efficiency 0.930 0.945 0.950
Low-pressure compressor efficiency 0.89 0.93 0.94
High-pressure compressor efficiency 0.88 0.90 0.93
High-pressure turbine efficiency 0.880 0.925 0.940
Low-pressure turbine efficiency 0.91 0.93 0.95

‡Here,we define the risk as the probability of not satisfying the performance
requirements. The riskmay be defined in other ways depending on the context
and application.
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For the numerical results presented in Sec. IV.A, because of the
exploratory nature of this work, the value of λ is chosen to be 1. In the
case of a normal distribution, this corresponds to 84% probability of
satisfying the performance requirements. Sections III.E, IV.B discuss
how to trade off the competing goals of reducing the expected fuel
burn and reducing the probability of not satisfying the performance
requirements.
Note that there are no explicit equality constraints in this

optimization problem. The meaning of equality constraints in the
presence of uncertainty can be ambiguous. If there are equality con-
straints, one strategy is to eliminate the equality constraints from the
optimization problem and handle them internally in an augmented
numerical model (along with the equations of the original numerical
model) [8].
To facilitate the presentation of our multi-information source

approach in Sec. III, we write the optimization under uncertainty
problem in the following general form:

x� � argmin
x

f�x; sA�x�� s:t: g�x; sA�x�� ≤ 0 (3)

The objective and constraint functions f and g, respectively,
depend on the statistic sA�x� (e.g., mean, variance) of the random
variable A�x;ω�. Let the numerical model (e.g., TASOPT) be
denoted as M�x; u�, where u is a realization of the uncertain model
parametersU�ω�. Then, the random variable A�x;ω� � M�x;U�ω��
is the output of the model (here PFEI, balanced field length, span
length, etc.). Because sA�x� cannot be evaluated analytically in
most cases, we compute an estimator ŝA�x� (i.e., a numerical
approximation of sA) to a specified root mean square error (RMSE).
Therefore, the objective and constraints in Eq. (3) are estimated as
f̂�x� � f�x; ŝA�x�� and ĝ�x� � g�x; ŝA�x��.
The discussion of the results in Sec. IVwill return to theD8 aircraft

optimization under uncertainty problem in Eq. (2).

III. Multi-Information Source Approach

Solving the general optimization under uncertainty problem in
Eq. (3) can be computationally expensive; at every step in the design
space toward the optimum, xk, k � 0; 1; 2; : : : , we need to calculate
the estimator ŝA�xk�. This work focuses on Monte Carlo simulation
because it is nonintrusive and parallelizable, and convergence is
independent of the dimension of the uncertain model parameters.
However, it may require many expensive model evaluations to
achieve an acceptably low estimator RMSE. We reduce the compu-
tational cost by making use of the control variate method to leverage
the model autocorrelation in the design space, that is, the correlation
between M�x;U�ω�� and M�x� Δx;U�ω�� for small Δx. This
section begins with a discussion on the basic Monte Carlo approach.

A. Monte Carlo Simulation

Consider estimating sA � E�A�ω�� of a random variable A�ω�.
Given n independent and identically distributed samples
a1; a2; : : : ; an drawn from the distribution of A�ω�, the regular
Monte Carlo estimator of sA, denoted as �an, is

�an �
1

n

Xn
i�1

ai (4)

Its mean square error (MSE) is obtained by computing the
estimator variance

MSE� �an� � Var� �an� �
1

n2
Var

�Xn
i�1

ai

�
� σ2A
n

(5)

where σ2A � Var�A�ω�� is the variance of the random variable A�ω�.
Our approach to reducing the number of samples needed to achieve
an acceptably low estimator variance (i.e., estimator MSE) is based
on the control variate method [10,11], which makes use of the

correlation between the random variable A�ω� and an auxiliary
random variable C�ω�.
The optimization under uncertainty problem in Eq. (3) requires

estimation of the statistics of the output of the numerical model
M�xk;U�ω�� at a particular vector of design variables xk. For
estimating the mean of the model output, the Monte Carlo samples
are thus defined as

ai � M�xk; ui�; i � 1; : : : ; n (6)

where ui are independent and identically distributed samples drawn
from the distribution of the uncertain model parameters U�ω�. From
the previous Monte Carlo framework, we have

�an �
1

n

Xn
i�1

ai �
1

n

Xn
i�1

M�xk; ui� (7)

To apply the same control variate framework for estimating the
variance of the model output, we define the Monte Carlo samples as

bi �
n

n − 1

�
M�xk; ui� −

1

n

Xn
j�1

M�xk; uj�
��
M�xk; ui�

−
1

n − 1

Xn−1
j�1

M�xk; uj�
�
; i � 1; : : : ; n (8)

That is, the samples are residuals based on the one-pass algorithm
for computing the variance [22]. From the same Monte Carlo
framework, we have

�bn �
1

n

Xn
i�1

bi �
1

n − 1

Xn
i�1

�
M�xk; ui� −

1

n

Xn
j�1

M�xk; uj�
�
2

(9)

Therefore, the discussion in subsequent sections will assume that
we are estimating the mean of the model output with the
understanding that the same approach can be applied to estimate the
variance of the model output by redefining the Monte Carlo samples
as described previously.
After computing the estimator ŝA at xk, we evaluate the objective

and constraint functions. Typically, we are interested in the error of f̂
and ĝ rather than the error in ŝA directly. By taking a first-order Taylor
expansion of the function f (and similarly for g) about the statistic sA
and then taking the expectation, the error of the objective and
constraint functions is related to the estimator variance by

MSE�f̂�xk�� ≈ ∇sf�xk; ŝA�T Var�ŝA�∇sf�xk; ŝA� (10)

where∇sf�xk; ŝA� is the gradient of f with respect to the statistic sA,
and Var�ŝA� is the estimator variance.

B. Control Variate Method

Computing the regular Monte Carlo estimator can be computa-
tionally expensive because it has a relatively slow error convergence
rate of n1∕2, where n is the number of samples used. The control
variate method [10,11] is an estimator variance reduction technique;
it reduces the constant factor of the error convergence. Although the
convergence rate does not change, it has the effect of shifting the
convergence curve downward. For a given desired error level, this
downward shift can result in relatively large computational savings
because of the shallow convergence curve.
The control variatemethod reduces the estimator variance by using

an auxiliary random variable C�ω�, known as the control variate, to
make a correction to the regular Monte Carlo estimator of
sA � E�A�ω��. The control variate estimator is

ŝA � �an � α�sC − �cn� (11)

where �an and �cn are the regular Monte Carlo estimators of A�ω� and
C�ω�, respectively, using n samples, and α is the control variate
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parameter to be determined. In the classical control variate method, it
is assumed that the exact mean of the auxiliary random variable,
sC � E�C�ω��, is known. The correction applied to �an does not
change the expectation of the estimator, but it does add additional
terms to the estimator variance:

Var� ~sA� �
1

n
�σ2A � α2σ2C − 2αρACσAσC� (12)

where σ2C � Var�C�ω�� is the variance of the auxiliary random
variable C�ω�, and ρAC � Corr�A�ω�; C�ω�� is the correlation co-
efficient between the two random variables.
The control variate parameter α is determined by minimizing

the estimator variance for a given fixed number of samples n. This
results in

α � ρAC
σA
σC

(13)

and

MSE� ~sA� � Var� ~sA� � �1 − ρ2AC�
σ2A
n

(14)

Comparing Eq. (14) with Eq. (5) reveals that the control variate
estimator is effective at reducing the estimator variance when the
random variable A�ω� and the auxiliary random variable C�ω� are
correlated. In fact, the factor �1 − ρ2AC� in Eq. (14) is guaranteed to be
less than or equal to 1. In essence, the control variate estimator
incorporates information about the auxiliary random variable to
reduce the estimator error. This can be interpreted from a regression
point of view. Figure 3 illustrates a scatter plot of n samples of A�ω�
and C�ω� and the linear regression of the samples with slope α. The
values of the regular Monte Carlo estimators �an and �cn can be
computed from these samples as defined in Eq. (4). Given
sC � E�C�ω��, the control variate method makes an adjustment to �an
based on the difference sC − �cn and the slope of the regression line α
to obtain the control variate estimator ~sA. We make use of this
framework for the information-reuse estimator next to leverage
information from previous optimization iterations.

C. Information-Reuse Estimator

To solve the general optimization under uncertainty problem in
Eq. (3), the statistics of the model have to be estimated at a sequence
of vectors of design variables fx0; x1; : : : ; xkg determined by the
optimization routine as it progresses toward the optimal design. At

the current optimization iteration k, we define the random variable
A�ω� � M�xk;U�ω��, and we wish to compute an estimator ŝA
of the statistic sA � E�A�ω��. The control variate method makes use
of a correlated auxiliary random variable C�ω�. Here, a good
candidate for C�ω� is M�xk � Δx;U�ω�� for small Δx. It can be
shown that, if the model is twice differentiable in the design space,
then the correlation coefficient between M�xk;U�ω�� and M�xk �
Δx;U�ω�� approaches 1 quadratically asΔx→ 0 [8]. Therefore, we
define the auxiliary random variable to be the model evaluated at the
closest previous design point, C�ω� � M�xl;U�ω��, where

l � argmin
l 0<k

kxk − xl 0 k (15)

The classical control variate method requires the exact mean of the
auxiliary random variable, sC � E�C�ω��, which is unknown in this
context. Instead, we replace sC with the estimator computed during
the previous optimization iteration l and denote it as ŝC. We assume
that all previously computed estimators and their variances from past
optimization iterations have been stored in a database and are
available for retrieval during the current optimization iteration k. The
information-reuse estimator is adapted from the classical control
variate method as follows:

ŝA � �an � γ�ŝC − �cn� (16)

The expectation of the information-reuse estimator is

E�ŝA� � E� �an� � γ�E�ŝC� − E� �cn��
� E�A�ω�� � γ�E�C�ω�� − E�C�ω��� � E�A�ω�� (17)

and the variance of the information-reuse estimator is

Var�ŝA� � Var� �an� � γ2�Var�ŝC� � Var� �cn�� − 2γ Cov� �an; �cn�

� σ2A
n
� γ2

�
Var�ŝC� �

σ2C
n

�
− 2γ

ρACσAσC
n

� 1

n
�σ2A � γ2σ2C�1� η� − 2γρACσAσC� (18)

where

η � Var�ŝC�
Var� �cn�

� Var�ŝC�
σ2C∕n

(19)

The estimator variance is derived assuming that ŝC, the
information-reuse estimator computed during optimization iteration
l, is uncorrelated with �an or �cn, which are computed at the
current optimization iteration k. In other words, we require that
Cov�ŝC; �an� � Cov�ŝC; �cn� � 0. To achieve this, the set of real-
izations of the uncertainmodel parametersU�ω� used in optimization
iteration kmust be independent of the set of realizations ofU�ω� used
in optimization iteration l.
Given a fixed number of samples n, the information-reuse

estimator variance is minimized by the following choice of the con-
trol variate parameter:

γ �
�

ρAC
1� η

�
σA
σC

(20)

resulting in the information-reuse estimator variance

Var�ŝA� �
�
1 −

ρ2AC
1� η

�
σ2A
n

(21)

A reduction in the error of the information-reuse estimator relative
to the regular Monte Carlo estimator using n samples is achieved
when the correlation coefficient ρAC is close to 1 (or −1).

Fig. 3 Illustration of the regression interpretation of the control variate
method. The dots are samples of the random variables A�ω� and C�ω�.
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At the current optimization iteration k, independent and identically
distributed samples ui, i � 1; 2; 3; : : : ; n are drawn from the
distribution ofU�ω�, and the model is evaluated at both xk and xl per
sample to compute �an and �cn. In terms of the number of the model
evaluations, the computational effort for the regular Monte Carlo
estimator �an is n, whereas the computational effort for the
information-reuse estimator ŝA is 2n. Let p � 2n denote the
computational effort for the information-reuse estimator. TheMSEof
the information-reuse estimator in terms of its computational effort is

MSE�ŝA;p� � Var�ŝA;p� � 2

�
1 −

ρ2AC
1� η

�
σ2A
p

(22)

Unlike the classical control variate method, the factor 2�1 −
ρ2AC∕1� η� in Eq. (22) is not guaranteed to be less than or equal to 1.
Therefore, if the correlation coefficient ρAC is not high enough (e.g.,
when xl is far from xk), the information-reuse estimator may require
more computational effort to achieve the same MSE as the regular
Monte Carlo estimator. If we detect this situation, say, by comparing
Eqs. (5) and (22), we switch back to the regular Monte Carlo
estimator for this optimization iteration as a safeguard.

D. Implementation

The implementation of our approach is illustrated by the
flowcharts in Figs. 4 and 5. Figure 4 describes the “outer loop” in
which an optimization routine iterates to search the design space for

the optimum. Figure 5 describes the “inner loop” to calculate the
information-reuse estimator at the design point of every optimization
iteration.
Let us consider an optimization algorithm that generates a

sequence of design points xk, k � 0; 1; 2; : : : , in its search for the
optimal design. At each optimization iteration k, we choose a past
optimization iteration l � argminl 0<kkxk − xl 0 k and retrieve from
the database xl and the corresponding estimator ŝC and estimator
variance Var�ŝC�.
Next,we step into the inner loop described by Fig. 5 to compute the

estimator at xk. As described at the end of Sec. III.C, we need to
determine whether to use the information-reuse estimator or to fall
back to the regular Monte Carlo estimator. Therefore, we start by
drawing an initial number of samples fuigni�1, n � ninit, from the
distribution of U�ω� and evaluate M�xk; ui� and M�xl; ui� to
generate the pairs of samples fai; cigni�1. We calculate the number of
model evaluations needed to meet the desired MSE for the regular
Monte Carlo estimator from Eq. (5) and the corresponding number
needed for the information-reuse estimator from Eq. (22). If the
regular Monte Carlo estimator would require more model
evaluations, we continue with the information-reuse estimator.
Otherwise, we continue with the regular Monte Carlo estimator
instead. This latter outcome would happen if the samples at design
points xk and xl were not sufficiently correlated.
If we continuewith the information-reuse estimator, we increase n

and generate additional pairs of samples of ai and ci.We compute the
information-reuse estimator ŝA;p and its estimator variance Var�ŝA;p�
from Eqs. (16, 22), respectively. However, the values of σA, σC, and
ρAC are unknown. Therefore, following the approach taken in the
classical control variate method, we replace them with their sample
estimates from the samples fai; cigni�1:

ρ̂2AC �
�
P

n
i�1�ai − �an��ci − �cn��2

�
P

n
i�1 �ai − �an�2��

P
n
i�1 �ci − �cn�2�

(23)

σ̂2A �
P

n
i�1 �ai − �an�2
n − 1

(24)

γ̂ � 1

1� η̂

P
n
i�1�ai − �an��ci − �cn�P

n
i�1 �ci − �cn�2

(25)

η̂ � Var�ŝC�n�n − 1�P
n
i�1 �ci − �cn�2

(26)

If the MSE (i.e., Var�ŝA;p�) is unacceptable, we increase n and
compute the information-reuse estimator and its estimator variance
again.
If the MSE is acceptable, we return to the outer loop described by

Fig. 4. We evaluate the objective and constraint functions f̂�xk� �
f�xk; ŝA;p� and ĝ�xk� � g�xk; ŝA;p�. Before the end of optimization
iteration k, we store ŝA;p and Var�ŝA;p� in the database to provide
candidates for ŝC andVar�ŝC� for subsequent optimization iterations.
Finally, we return the values f̂�xk� and ĝ�xk� to the optimization
routine to determine the next design point xk�1 for optimization
iteration k� 1 and repeat.
Note that, at the initial design point x0, we cannot compute

the information-reuse estimator because the database is empty.
Therefore, we start with the regular Monte Carlo estimator at the
initial design point. This means that the first optimization iteration
tends to be the most computationally expensive. However, as the
optimization progresses, the database of candidates for ŝC and
Var�ŝC� grows. Furthermore, typical optimization algorithms take
shorter and shorter steps as they approach the optimum, reducing
kxk − xlk and potentially improving the approximation

Fig. 4 Flowchart illustrating the outer loop of the multi-information
source approach for optimization under uncertainty.
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M�xl;U�ω�� of M�xk;U�ω��. This makes the information-reuse
estimator increasingly effective as the optimization progresses.

E. Pareto Frontier Exploration and Trade Studies

When there are multiple objectives of interest in an optimization

problem, it is often informative to generate the Pareto frontier and

study the tradeoff between the competing objectives. A Pareto

frontier is the set of optimal designs in which it is impossible

to improve one objective without worsening another objective.

Methods to determine the Pareto frontier include the weighted sum,

the adaptive weighted sum [23], and the normal boundary inter-

section [24]. They require solving a sequence of optimization

problems to search for the points along the Pareto frontier.
Many optimization under uncertainty problems have competing

goals of minimizing the expected cost and the risk. For example, it
would be worthwhile in Eq. (2) to adjust the weight λ and study the
tradeoff between the expected fuel burn and the risk of not satisfying
the performance criteria. Generating a Pareto frontier in this case
(using methods such as the weighted sum) would require solving a

sequence of optimization under uncertainty problems, each with a
different value of λ, which can be computationally expensive even
with the savings provided by the information-reuse estimator.
Fortunately, because the same statistics of the model output (e.g.,
mean and variance) are calculated for each optimization under
uncertainty problem in the sequence, then, using our multi-infor-
mation source approach, each problem need not be solved from
scratch.
As discussed previously, the first few optimization iterations using

the information-reuse estimator require themost computational effort
because the database of past optimization iterations has yet to be built
up. To reduce this computational cost, we reuse the database of
estimators from the previous optimization under uncertainty problem
in the next optimization under uncertainty problem. This is possible
because the same statistics are being estimated at the design points
visited by each optimization under uncertainty problem in the
sequence; the only difference between the problems is the objective
and/or constraint functions of those statistics. Reusing the database
means that there are good candidates for the auxiliary random
variable starting from the first optimization iteration (except for the

Fig. 5 Flowchart illustrating the procedure to compute the information-reuse estimator (info reuse) with fallback to the regularMonte Carlo estimator
(regular MC).
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first iteration of the first optimization under uncertainty problem),
and therefore the information-reuse estimator requires relatively little
computational effort even at the start of each optimization under
uncertainty problem.

IV. Numerical Results

The optimization under uncertainty problem of interest as an
example here is the conceptual design of the D8 aircraft. We solve
Eq. (2) using both the regular Monte Carlo estimator and the
information-reuse estimator to compare their computational costs.
We also demonstrate how ourmulti-information source approach can
be used to study the risk–performance tradeoff that requires solving
many optimization under uncertainty problems.

A. Comparison of Computational Costs

Weconsider two cases: at each optimization iteration, the objective
and constraint functions are evaluated using 1) the regular
Monte Carlo estimator, and 2) the information-reuse estimator. In
both cases, the tolerance on the rootmean square error (RMSE) of the
objective function estimator is fixed at 1 × 10−3, whereas the
tolerance on the RMSE of the constraint function estimators is fixed
at 5 × 10−4 for all optimization iterations. The initial number of
samplesninit is 32. Because of the pseudorandomness ofMonte Carlo
sampling, the objective and constraint values returned to the
optimization routine are noisy, which poses a challenge for any
optimization routine that is not noise-tolerant. We employ the
COBYLA derivative-free constrained optimization routine [25] to
solve the D8 aircraft optimization under uncertainty problem in
Eq. (2). It constructs linear interpolation models of the objective and
constraint functions using evaluations on a simplex in the design
space. New vectors of design variables are obtained either by solving
a linear programming subproblem using the interpolation models or
by improving the geometry of the simplex. Although derivative-free
routines such as COBYLA are not developed specifically for noisy
optimization problems, they are typically tolerant to small levels of
noise in practice [26].
The convergence of the objective (expected fuel burn) as a function

of the cumulative computational effort is shown in Fig. 6, where the
computational effort is the number of TASOPTmodel evaluations. In
total, case 1 required 1.13 × 106 model evaluations, and case 2
required 1.16 × 105 model evaluations. Thus, the multi-information
source approach using the information-reuse estimator provided
about 90% savings in computational effort over using the regular
Monte Carlo estimator. Each evaluation of TASOPT takes about 0.5 s
on a desktop computer.§ When evaluating the model in parallel on
four cores, the D8 aircraft optimization under uncertainty problem
was solved in 237 min with the information-reuse estimator com-
pared to 38 h with the regular Monte Carlo estimator. Although we
have used four cores here, as a sampling-based method the
information-reuse estimator can be easily parallelized to use more
cores if the computational resources are available.
Figure 7 plots the computational effort required to compute the

estimators in case 1 and case 2 at each optimization iteration. After
the first few optimization iterations, the information-reuse estimator
requires significantly less computational effort than the regular
Monte Carlo estimator to achieve the required RMSE tolerance
because the database of past optimization iterations has built up
sufficiently to provide good candidates for the auxiliary random
variable. Many optimization iterations after iteration 20 only needed
the minimal number of sample points (ninit � 32, corresponding to
computational effort of 64) to meet the desired RMSE. As described
in Fig. 5, at least ninit samples are generated at each optimization
iteration to decide whether to continue with the information-reuse
estimator or to fall back to the regularMonteCarlo estimator.Overall,
in case 2, only 10 out of 41 optimization iterations had to fall back to
the regular Monte Carlo estimator, and they occur mostly during the
first few optimization iterations.

The correlation coefficient ρ̂AC for the expected fuel burn used to
compute the information-reuse estimator at each optimization
iteration is shown in Fig. 8a. It can be seen that the correlation
coefficient is close to one for the later optimization iterations. As
mentioned previously, this is partly a result of the database being built
up at the optimization progresses, but it is also a result of the
optimization routine taking smaller and smaller steps as it refines the
location of the optimum (see Fig. 8b). As discussed in Sec. III.C,
the model at a previous design point is a good approximation of the
model at the current design point when the distance between the
design points are small. The regular Monte Carlo estimator discards
this information and computes a new estimator independently at each
optimization iteration. On the other hand, our multi-information
source approach using the information-reuse estimator captures this
information in the database and makes use of it by means of the
correlation coefficient.
By optimizing the aircraft design while taking into account the

uncertainties of the technological projections, the expected fuel burn
decreased from 2.69 to 2.43 kJ∕�kg · km�. The optimal aircraft
design has an 84% chance of satisfying the performance re-
quirements compared to a 22% chance for the initial aircraft design,
with the two critical constraints being the balanced field length
requirement and the span length requirement. The optimal design
variables found using the regular Monte Carlo estimator and those
found using the information-reuse estimator are listed in Table 1. In
both cases, the most significant change is the decease in wing aspect
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Fig. 6 Comparison of convergence histories for the D8 aircraft
optimization under uncertainty problem using 1) the regular
Monte Carlo estimator (regular MC), and 2) the information-reuse
estimator (info reuse).
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Fig. 7 Computational effort in terms of the number of model
evaluations per optimization iteration.

§The computer processor is an Intel Core i7-2600 with four cores at
3.4 GHz.
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ratio so that the wing area can increase by about 3% without in-
creasing the span length. There is a corresponding increase in the
wing thickness at the wing root to support the increased wing area.

B. Risk–Performance Tradeoff Studies

In Sec. II, λ is set to one for the constraints of the D8 concept
aircraft optimization under uncertainty problem. However, the value
λ � 1 is chosen somewhat arbitrarily as a balance between per-
formance, defined as the expected fuel burn of the optimal aircraft,
and design risk, defined as the probability of not satisfying the
performance requirements. Therefore, it is useful to investigate the
tradeoff between the performance and the risk. For simplicity, rather
than applying methods such as the adaptive weighted sum or the
normal boundary intersection mentioned in Sec. III.E to generate a
sequence of optimization under uncertainty problems to solve, we
vary λ in equal steps from 0 to 3 and resolve the optimization under
uncertainty problem for each value of λ to produce the Pareto frontier.
As discussed in Sec. III.E, because the only difference between each
optimization under uncertainty problem is the value of λ, we reuse
the database of past optimization iterations in the sequence of
optimization under uncertainty problems to reduce the computational
cost. This has the effect of further reducing the computational effort
of the information-reuse estimator, especially during the first few
optimization iterations of each optimization under uncertainty
problem.
The Pareto frontier for the D8 concept aircraft is plotted in Fig. 9a.

We see that, although it is necessary to sacrifice expected fuel burn to

reduce the risk of not satisfying the performance requirements, the
increase in expected fuel burn is not large, demonstrating that the D8
aircraft concept design is relatively insensitive to the uncertainties.
Figure 9b shows the trend in the wing aspect ratio along the Pareto
frontier. It can be seen that the reduction in the wing aspect ratio is a
major driver for the increase in expected fuel burn; other design
variables do not show such a clear trend. If we first solve the
deterministic optimization problem with the 19 uncertain model
parameters fixed at the peak of the triangular distributions and then
reintroduce the uncertainties to the parameters to compute the
statistics of the deterministic optimal design, the mean fuel burn is
0.999 on the relative scale in Fig. 9a, but the probability of satisfying
the performance requirements is only about 30%. This demonstrates
that uncertainties must be taken into account during the design
process, not afterward.
As a comparison, we investigate the effect of the airframe size and

configuration on the aircraft’s sensitivity to the uncertainties. We
consider a hypothetical advanced-technology 737 aircraft, which is
in the same class as the D8 concept aircraft with 180 passengers and
3000 n mile range. We define this hypothetical aircraft to be outfitted
with the same advanced technologies as the D8 concept aircraft,
except that it has a conventional fuselage and two engines under the
wings (see the 737 schematic in Fig. 2). Therefore, it has the same
uncertain model parameters as those listed in Table 2 for the D8
concept aircraft; however, the fuselage boundary-layer ingestion
fraction parameter is not included because it is not applicable to
the conventional airframe configuration. The optimization under
uncertainty problem formulation for the advanced-technology 737
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aircraft is the same as that given in Eq. (2) for the D8 concept aircraft,
and the numerical simulation model is also TASOPT.We again apply
the multi-information source approach to generate the Pareto frontier
of the expected fuel burn versus the risk of not satisfying the per-
formance requirements for the advanced-technology 737 aircraft, and
the results are shown in Fig. 9a. Like the D8 concept aircraft, the
advanced-technology 737 also relatively insensitive to the uncer-
tainties.
Similarly, we consider a hypothetical advanced-technology 777

aircraft. Like the advanced-technology 737 aircraft, it is outfitted
with the same advanced technologies as the D8 concept aircraft
but has a conventional fuselage and two engines under the wings.
Therefore, it is also assumed to have the same uncertain model
parameters as those listed in Table 2, except for the fuselage
boundary-layer ingestion fraction parameter. However, the
advanced-technology 777 aircraft is sized for 450 passengers and
6000 n mile range. Thus, the span length requirement in Eq. (1) is
increased from 117.5 to 200 ft to reflect the larger class. The Pareto
frontier for this aircraft is also shown in Fig. 9a. It can be seen that,
compared to the D8 concept aircraft and the advanced-technology
737 aircraft, the advanced-technology 777 aircraft needs to trade off
more expected fuel burn to satisfy performance requirements. In this
study, the larger aircraft is more sensitive to the uncertainties in the
technologies that underlie its performance.

V. Conclusions

This paper presented a Monte Carlo multi-information source
approach for solving an aircraft conceptual design problem with
uncertainties in the projections of technological improvements.
Given the modeling assumptions and the assessment of the un-
certainties, the expected fuel burn for a concept D8 design
decreased from 2.69 to 2.43 kJ∕�kg · km�, whereas the probability
of satisfying the performance requirements increased from 22 to
84% by taking into account the uncertainties in the design pro-
cess. This is facilitated by our information-reuse estimator that
reduces the computational cost relative to the regular Monte Carlo
estimator by 90%. It makes use of the correlation between the
random output of the aircraft model induced by the uncertain model
parameters at different points in the design space. In other words,
considering the model output as a random process indexed by the
design variables, the information-reuse estimator is in effect taking
advantage of the autocorrelation structure of themodel in the design
space and generates the desired statistics with less computational
effort.
The multi-information source approach developed based on the

information-reuse estimator is suitable to a broad range of other
optimization under uncertainty problems because it is nonintrusive,
easily parallelizable, and can handle a large number of uncertain
model parameters with arbitrary probability distributions. Because it
is based onMonte Carlo simulation, it is broadly applicable with few
assumptions; the variance of the model output has to be finite. If the
mathematicalmodel is not smooth in the design space, the correlation
between the model outputs at neighboring design points may be low.
Furthermore, because the correlation between the model outputs
tends to be higher when the design points are close together, an
optimization routine that samples the design space widely for many
optimization iterations before converging to a design point may not
realize the benefit of the information-reuse estimator until the design
points start to cluster. In either situation, the safeguard mechanism
would fall back to regular Monte Carlo estimation so that the process
would not be worse off than performing regular Monte Carlo
estimation.
Finally, by carrying forward the database of past estimators and

estimator variances, it was demonstrated that the multi-information
source approach can be adapted to further reduce the computational
cost of solving multiple optimization under uncertainty problems,
enabling the trade off between risk and performance in the optimal
aircraft designs.
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