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Designing and optimizing complex systems often requires numerous evaluations of a
quantity of interest. This is typically achieved by querying potentially expensive numer-
ical models in an optimization process. To alleviate the cost of optimization, surrogate
models can be used in lieu of the original model, as they are cheaper to evaluate. In
addition, different information sources with varying fidelity, such as numerical models, ex-
perimental results or historical data may be available to estimate the quantity of interest.
This work proposes a strategy to adaptively construct and exploit a multifidelity surrogate
when multiple information sources of varying fidelity are available. One of the distin-
guishing features of the proposed approach is the relaxation of the common assumption
of hierarchical relationships among information sources. This is achieved by endowing the
surrogate representation with uncertainty functions that can vary across the design space;
this uncertainty quantifies the fidelity of the underlying information source. The resulting
multifidelity surrogate is used in an optimization setting to identify the next design to
evaluate, as well as to select the information sources with which to perform the evaluation,
based on information source evaluation cost and fidelity. For an aerodynamic design ex-
ample, the proposed strategy leverages multifidelity information to reduce the number of
evaluations of the expensive information source needed during the optimization.

I. Introduction

Designing and optimizing complex systems generally requires the evaluation for different designs of quan-
tities of interest describing designer preferences and design requirements. Numerical optimization achieves
this by evaluating a model: a mapping from the design space to estimates of the quantities of interest. It is
often the case that the quantities of interest can be evaluated by different means. For instance, they could be
computable with numerical models, measurable by experiments, or informed by historical data. We refer to
these as different information sources (IS), where each IS has an associated fidelity that represents its ability
to estimate the true value of a quantity of interest. To speed up the optimization process, it is desirable to
leverage these multiple IS. One way to do this is to construct cheap-to-evaluate surrogates that embody the
fidelity of the underlying IS.

Strategies to perform multifidelity optimization have been studied extensively in the case where a hier-
archy of fidelity exists among models. These include creating response surface surrogates using both low
and high-fidelity model evaluations,1 or computing higher fidelity model samples when the difference be-
tween two lower fidelity evaluations is larger than a threshold.2 Multifidelity optimization strategies can
be divided into global and local approaches. Global approaches try to find the best design in the entire
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feasible domain: existing strategies include building an interpolation of the high-fidelity model as in Efficient
Global Optimization3 (EGO). A multi-objective version of EGO developed in Rajnarayan4 and Rajnarayan
et al.5 combines the use of a surrogate to both minimize the quantity of interest and explore unevaluated
regions. In Kennedy and O’Hagan,6 Huang et al.7 and Xiong and Chen,8 Gaussian processes are used to
approximate the difference between a high-fidelity and a lower fidelity model. Co-Kriging methods have
been developed to build multifidelity surrogates.9,10,11,12 Moore et al.13 sequentially construct a Kriging
surrogate using several multifidelity models, where the fidelity is quantified by a metric accounting for the
correlation between each model and the real world process. In that work, the next design to evaluate and the
model to query are determined by maximizing a value of information metric. Correlations between models
have also been exploited to create a multifidelity approach for optimization under uncertainty.14

Local multifidelity optimization approaches, on the other hand, focus the search on finding a local op-
timum. Booker et al.15 developed a gradient-free pattern search algorithm for multifidelity optimization.
When gradients are available, trust region methods use a local approximation of the high-fidelity model to
perform the optimization. One significant extension of the trust region method to multifidelity optimization
is presented by Alexandrov et al.16,17 In that work, surrogates are created based on the low-fidelity model
in a way that satisfies the first-order consistency condition, i.e., the equality of the value and gradient of the
surrogate and high-fidelity model at each trust region center. This enables a guarantee that the multifidelity
trust region method is provably convergent with respect to an optimum of the high-fidelity model. March
and Willcox18 extended a multifidelity trust region approach to the derivative-free setting.

In this work, we propose a method based on statistical techniques to adaptively build a multifidelity
surrogate for multifidelity optimization. We propose a new definition of fidelity in the form of a variance
metric. This variance is characterized by expert opinion and can vary across the design space. Gaussian
processes are used to create an intermediate surrogate for each IS. The uncertainty of each intermediate
surrogate is then characterized by a total variance, combining the posterior variance of the Gaussian process
and the fidelity variance. Finally, a single multifidelity surrogate is constructed by fusing all the intermediate
surrogates. One of the advantages of the approach is the multifidelity surrogate capability of integrating IS
whose fidelity changes over the design space, thus relaxing the common assumption of hierarchical relation-
ships among IS. We also introduce an optimization algorithm that leverages our multifidelity surrogate. The
exploration of the design space is based on an extension of the expected improvement criteria to balance
the need to improve the surrogate and its exploitation. A heuristic selects the next IS to query, taking into
account evaluation cost and fidelity.

The proposed multifidelity surrogate approach is applied to the aerodynamic example of computing the lift
coefficient of a NACA 0012 airfoil in the subsonic regime. In this example, the multifidelity surrogate mimics
the behavior of the higher fidelity samples where available, and uses the lower fidelity points elsewhere. The
proposed method is also able to quantify the uncertainty of the multifidelity surrogate and identify whether
the fidelity or the sampling is the principal source of this uncertainty. The proposed optimization algorithm
is applied to minimize the drag coefficient of a NACA 0012 airfoil with a constraint on lift coefficient. It is
shown to reduce the overall evaluation cost of the optimization in the case where one IS is more expensive
than the others.

This paper is organized as follows. Section II presents the construction of the multifidelity surrogate. Sec-
tion III details the proposed optimization algorithm. In Section IV, the multifidelity optimization algorithm
is applied to an aerodynamic example. Finally, Section V concludes the paper.

II. Constructing a Multifidelity Surrogate

This section describes the proposed approach for constructing multifidelity surrogates. This consists of
the following two steps. First, for each IS, construct an intermediate surrogate using a Gaussian process
to define the mean and associated variance quantifying the uncertainty. Second, build the multifidelity
surrogate by fusing information from the intermediate surrogates.

II.A. Building an Intermediate Surrogate with Gaussian Processes

II.A.1. Mean of the Intermediate Surrogate

We consider the case where we have M IS available f1, · · · , fM , all mapping from the design space X ⊂ Rd
to R. The mth IS is evaluated at a finite number of designs, specified by the training set Dm, which is
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composed of Nm evaluated design points written in matrix form as Xm = [x1,m, · · · ,xNm,m] ∈ Rd×Nm and
Nm performances estimates written in vector form as ym = [y1,m, · · · , yNm,m]> ∈ RNm with xi,m the ith

evaluated design point of the mth IS and yi,m = fm(xi,m) its associated performance.
The first step in our approach is to construct an intermediate surrogate for each IS fm using Gaussian

processes (see Rasmussen and Williams19 for an overview of Gaussian processes). We choose a square expo-
nential covariance function with additive Gaussian noise and select the hyper-parameters of the covariance
function as well as the noise variance with the maximum marginal likelihood method. The hyper-parameters
and the noise variance depend on the data set Dm, leading to a different covariance function km and noise
variance λm for each IS fm. The posterior mean µm of each Gaussian process can be computed in closed
form for any unevaluated design x ∈ X and used as a surrogate of fm:

µm(x) =Km(Xm,x)>[Km(Xm, Xm) + λmI]−1ym, (1)

with Km(Xm, Xm) the Nm × Nm matrix whose ijth entry is km(xi,m,xj,m) and Km(Xm,x) the Nm × 1
vector whose ith entry is km(xi,m,x).

II.A.2. Sources of Uncertainty in Building an Intermediate Surrogate

There are different sources of uncertainty that arise in the construction of the proposed multifidelity surro-
gate. In this section, we briefly describe these uncertainties and their models.

Variance Associated with Gaussian Process

For each IS fm, after conditioning the Gaussian process with the training data Dm, the prior statistics are
updated and a posterior variance σ2

GP,m can be computed everywhere on the design space

σ2
GP,m(x) =km(x,x)−Km(Xm,x)>[Km(Xm, Xm) + λmI]−1Km(Xm,x). (2)

The prior variance is reduced where training data are available, forming uncertainty bubbles (Fig. 1 left
panel). When the training points are sparse in the design space, σ2

GP,m is an indicator of the quality of the
sampling.

Variance Associated with Fidelity

We consider a second source of uncertainty to be that inherent to the IS used to produce the data set.
This uncertainty is the model inadequacy defined by Kennedy and O’Hagan20 as the “difference between
the true mean value of the real world process and the code output at the true value of the input”. The
model inadequacy cannot be computed as it requires knowing the true mean value of the real world process.
Instead, we associate model inadequacy with fidelity and quantify it for IS fm with a fidelity variance σ2

f,m.
This fidelity variance provides a lower bound on the uncertainty of the intermediate surrogate (i.e., the
surrogate cannot be more accurate that the underlying IS used to create it). Unlike the traditional view of
multifidelity modeling, which imposes a hierarchy among the IS, we consider the fidelity to be free to change
across the design space. We achieve this by letting σ2

f,m(x) be a function of the design variable x ∈ X . This
function is specific to each IS fm. In this work, we assume it to be provided as an input by an expert. This
approach to modeling fidelity is similar in spirit but differs in the mathematical representation from that in
Moore et al.,13 which models the correlation between an IS and the real world process.

Total Variance of an Intermediate Surrogate

To quantify the uncertainty of each intermediate surrogate in a way that takes account of the uncertainty
in the Gaussian process and the uncertainty stemming from the fidelity of the IS, we propose the definition
of a total variance σ2

t,m for the IS fm:

∀x ∈ X , σ2
t,m(x) = σ2

GP,m(x) + σ2
f,m(x), (3)

where σ2
GP,m(x) and σ2

f,m(x) are respectively the variance associated with the Gaussian process and the
fidelity variance of IS fm.
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The total variance σ2
t,m is bounded below by the fidelity variance σ2

f,m, which means that, no matter how
many samples are used to compute the intermediate surrogate, the uncertainty cannot be reduced below the
uncertainty of the IS itself. Fig. 1 illustrates how the intermediate surrogate is built for a given IS fm.

For any design x ∈ X , and each IS fm, we define the mth intermediate surrogate at x to be the random
variable Sx,m with the following distribution

Sx,m ∼ N (µm(x), σ2
t,m(x)), (4)

where N denotes a Gaussian distribution, and the mean µm(x) and variance σ2
t,m(x) are defined by Eqs. (1)

and (3).
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Figure 1: Left panel: Posterior mean µm and standard deviation σGP,m computed for a given IS. Middle
panel: Samples with associated fidelity standard deviation σf,m. Right panel: Intermediate surrogate with
mean µm and total standard deviation σt,m.

II.B. Building a Multifidelity Surrogate: Fusion of Information

Once the intermediate surrogates have been computed for each of the M IS, a single multifidelity surrogate
can be built combining all the information available. For any x in X , following Winkler,21 we fuse the
random variables Sx,1, ... ,Sx,M , representing the intermediate surrogates, into a single random variable Sx

to obtain our multifidelity surrogate:

Sx ∼ N (µ(x), σ2(x)). (5)

Fig. 2 illustrates this notion forM = 2 IS. We make the simplifying assumption that the Sx,m are uncorrelated
random variables. Characterizing the correlation between the IS is a challenging but important topic of future
work. Given this simplifying assumption, the mean µ(x) and variance σ2(x) of the multifidelity surrogate
can be written

σ2(x) =

(
M∑
m=1

1

σ2
t,m(x)

)−1
(6)

µ(x) = σ2(x)

M∑
m=1

µm(x)

σ2
t,m(x)

. (7)

The mean µ(x) of the multifidelity surrogate Sx then provides an approximate estimation of the quantity of
interest µ(x).

II.C. Application to NACA 0012 Airfoil Lift Coefficient Modeling

Estimating the lift and drag coefficient of an airfoil, a wing, or an entire aircraft is necessary to assess the
quality of an airplane design and evaluate its performance. Since the fluid dynamics are governed by the
Navier-Stokes equations, which are expensive to solve, simplified equations have been developed to solve this
problem (e.g., Reynolds Averaged Navier-Stokes equations, Euler equations). These simplified equations are
typically derived using additional assumptions and are valid in given regimes. This extended set of equations
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Figure 2: At a given design x, the random variable Sx,1 and Sx,2 associated with the Gaussian process of IS 1
and 2 have the distributions represented by the blue and red shadings. The black shading is the distribution
of the random variable Sx after fusion: a normally distributed random variable of mean µ(x) and variance
σ2(x).

available to solve the same problem leads to information of variable fidelity. The fidelity depends not only
on the equations used, but also on the design tested, since the assumptions used to derive the equations
could be valid in some regimes but not in others. This motivates the new definition of fidelity proposed in
this paper, which no longer associates a unique fidelity to an IS, as in the traditional setting, but extends
the notion allowing the fidelity of an IS to vary across the design space. In addition, the computational cost
of solving the models can vary from a fraction of second to days, which motivates the use of surrogates, in
particular multifidelity surrogates, especially in an optimization context that requires multiple evaluations.
This section demonstrates the multifidelity surrogate approach developed in this paper on an aerodynamics
example: characterizing the lift coefficient CL of a NACA 0012 airfoil in the subsonic regime.

II.C.1. Problem Formulation

In this example, the quantity of interest is the lift coefficient CL of the airfoil, the design space X is two
dimensional: X = IM × Iα where IM = [0, 1] is the range of the Mach number M and Iα = [0, 12◦] is the
range of the angle of attack α. There are two IS available: f1 is the lift coefficient computed by XFOIL22

with viscous terms, and f2 is the lift coefficient computed by SU223 using Euler equations. These models
are described in the following subsections.

II.C.2. XFOIL

XFOIL is a solver for the design and analysis of airfoils in the subsonic regime. It couples a panel method
with the Karman-Tsien compressibility correction for the potential flow with a two-equation boundary layer
model. The laminar-turbulent transition is governed by an eN envelope criterion. More about the XFOIL
framework can be found in Drela,22 the boundary layer treatment is described in Drela and Giles,24 and a
general overview of the panel method used can be found in Drela.25

The design space X is sampled and evaluated densely except in the region of Mach number lower than
0.3 and angle of attack lower than 5◦ (Fig. 3a) for a Reynolds number Re = 105. Based on this data set D1,
the posterior mean µ1 of the intermediate surrogate for IS 1 is computed (Fig. 3b) as well as the posterior
variance σ2

GP,1. Fig. 3c shows the posterior standard deviation of the Gaussian process for XFOIL. It can
be seen that the uncertainty of the Gaussian process is low (σGP,1 ≈ 0.001) where samples are available, but
increases elsewhere, i.e., at Mach number larger than 0.9 and especially in the low Mach number, low angle
of attack region.

XFOIL is a solver for subsonic airfoils, and the compressibility correction used is only valid for relatively
low Mach number, hence the lift coefficient computed at high Mach number (M ≥ 0.65) has a low fidelity.
Similarly, for high angle of attack, physical phenomena, such as separation, are expected, and cannot be
handled by XFOIL, leading to a low fidelity calculation of CL for α ≥ 5◦. This is illustrated in Fig. 3d,
where the standard deviation of the fidelity σf,1 is low at low Mach number and low angle of attack, but
increases in regions where XFOIL is not trusted to capture the physics.
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(a) CL samples D1 computed with XFOIL
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(b) Intermediate surrogate mean using XFOIL

0

0.2

0.4

0.6

0.8

1

0

2

4

6

8

10

12

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

M
α

σ
G
P
,1
-
X
F
O
IL

(c) Posterior standard deviation σGP,1 of XFOIL
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(d) Fidelity standard deviation σf,1 of XFOIL
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Figure 3: XFOIL samples D1, posterior mean µ1 and standard deviation σGP,1, fidelity standard deviation
σf,1 and total standard deviation σt,1. In this and all the following figures, the color bar scale applies to all
subplots.
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The total variance σ2
t,1 of the intermediate surrogate of XFOIL is computed using Eq. (3) and is shown

on Fig. 3e. The uncertainty is dominated by the fidelity uncertainty at high Mach number and high angle
of attack, but dominated by the uncertainty of the Gaussian process in the low Mach number and low angle
of attack area.

II.C.3. SU2 Euler Code

Stanford University Unstructured (SU2) suite is a collection of software for the analysis of partial differential
equations (PDEs) and the optimization of PDE-constrained problems. We use SU2 to solve the Euler
equations on a NACA 0012 airfoil using a finite volume scheme. Details about the equations solved and
their implementation can be found in Palacios et al.23 Because SU2 is more expensive to evaluate than
XFOIL, the design space is sampled uniformly on X but more sparsely (Fig. 4a). Those evaluations define
a second data set D2 used to construct the intermediate surrogate for f2 (Fig. 4b).

The posterior variance σ2
GP,2 exhibits an oscillatory behavior but only in one direction of the design space

Fig. 4c. This can be explained by the different characteristic length-scales of this problem: the variations
of the lift coefficient with respect to the angle of attack have a longer length scale than the variations of
CL with respect to the Mach number. Hence, the sampling in Mach number M appears sparser than the
sampling in angle of attack α, leading to uncertainty bubbles along the Mach number axis.

Given that the Euler equations do not account for viscous terms, the fidelity variance of SU2 is low at
low Mach number and low angle of attack (Fig. 4d). In this region, σf,2 ≥ σf,1 because XFOIL has a better
representation of the physics than the Euler equations solved by SU2.

The total variance σ2
t,2 of the intermediate surrogate for f2 is dominated by the fidelity variance at high

Mach number and high angle of attack, and is dominated by the variance of the Gaussian process in the low
Mach number, low angle of attack region (Fig. 4e).

II.C.4. Combining Intermediate Surrogates

Fig. 5 shows the results after combining the two intermediate surrogate means µ1 and µ2: the multifidelity
surrogate mean µ exhibits the behavior of µ1 (respectively µ2) in regions where the uncertainty of µ1

(respectively µ2) is low (Fig. 5e). The uncertainty in the multifidelity surrogate is high in the region where
neither model has a high fidelity (high Mach number and high angle of attack). However, the uncertainty
has been reduced in the low Mach number, low angle of attack region, where IS 1 (XFOIL) is lacking samples
(Fig. 5f) but IS 2 (SU2) has been sampled uniformly.

III. Optimizing Using a Multifidelity Surrogate

We now introduce an algorithm that adaptively builds the multifidelity surrogate introduced in the
previous section and leverages it to solve an optimization problem. We first formulate the optimization
problem in the case where multiple IS are available. Then, we propose a metric to choose the next design to
evaluate and introduce a heuristic to choose which IS to query. This new training point is used to adaptively
update the multifidelity surrogate. Finally, we illustrate how constraints can be added.

III.A. Problem Formulation

When a single IS f1 is available, writing the (unconstrained) optimization problem is straightforward: x∗ =
argmin
x∈X

f1(x). However, the optimization problem needs a careful definition in the case where several

IS with varying fidelity are available. In this paper, we consider each IS to be uncertain but containing
relevant information about the real world process. In particular, none of the IS is considered to be the
real world process or “truth.” As stated in Section II, each IS fm is endowed with a fidelity variance σ2

f,m

that quantifies its fidelity. For any design x ∈ X , the IS fm is represented by a Gaussian random variable
Px,m ∼ N (fm(x), σ2

f,m(x)). Following Winkler,21 we define the estimation of the real world process, given M
different IS all evaluated at design x, to be Px: the fusion of the M random variables Px,m. In the simplifying
case where the Px,m are independent Gaussian random variables, the estimation of the real world process is
the random variable Px ∼ N (µ(x), σ2(x)) with:
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(b) Intermediate surrogate mean using SU2
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(c) Posterior standard deviation σGP,2 of SU2
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Figure 4: SU2 samples D2, posterior mean µ2 and standard deviation σGP,2, fidelity standard deviation σf,2
and total standard deviation σt,2.
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(c) Intermediate surrogate mean µ2 (SU2)
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Figure 5: Fusing intermediate surrogates for XFOIL and SU2 into a single multifidelity surrogate.
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σ2(x) =

(
M∑
m=1

1

σ2
f,m(x)

)−1
(8)

µ(x) = σ2(x)

M∑
m=1

fm(x)

σ2
f,m(x)

. (9)

Note that the mean µ(x) of the estimation of the real world process is a weighted sum of the M IS
values fm(x): the higher the fidelity, the higher the weight. We now formulate the multiple IS optimization
problem as:

x∗ = argmin
x∈X

µ(x). (10)

The estimation of the real world process and the multifidelity surrogate have similar formulas for their
variance and mean. The multifidelity surrogate replaces the fidelity variance σ2

f,m with the total variance

σ2
t,m, and replaces the IS value fm with the intermediate surrogate mean µm (Table 1). In regions that have

been well sampled, the intermediate surrogate mean µm becomes a good approximation of the IS value fm
and the posterior variance tends to σ2

GP,m ≈ 0 (hence σ2
t,m ≈ σ2

f,m). Thus, the mean µ(x) (respectively the

variance σ2(x)) of the multifidelity surrogate is also expected to be a good approximation of the mean µ(x)
(respectively the variance σ2(x)) of the estimation of the real world process. Using an optimization algorithm
that through adaptivity samples the design space near the minimizer of µ and updates the corresponding
surrogate, we expect the multifidelity surrogate mean µ to become a good approximation of µ near the
minimizer. In this way, by adaptively constructing the multifidelity surrogate and performing optimization
on its mean µ, we expect to obtain solutions close to those of the original problem defined by Eq. (10).

RV Mean Variance

Estimation of real world process Px µ(x) = σ2(x)

M∑
m=1

fm(x)

σ2
f,m(x)

σ2(x) =

(
M∑
m=1

1

σ2
f,m(x)

)−1

Multifidelity surrogate Sx µ(x) = σ2(x)

M∑
m=1

µm(x)

σ2
t,m(x)

σ2(x) =

(
M∑
m=1

1

σ2
t,m(x)

)−1
Table 1: Comparison of means and variances of the random variables representing the best estimation of the
real world process and the multifidelity surrogate.

III.B. Choosing the Next Design to Evaluate

Starting with an initial training set for each of the M IS, we construct an initial multifidelity surrogate (the
designs in the training sets can be different for each IS). At each iteration n of the optimization algorithm,
a new design xn is evaluated with IS number mn ∈ {1, · · · ,M}. The new training point (xn,yn = fmn

(xn))
is added to the training set Dmn

. The mth
n intermediate surrogate and the multifidelity surrogate are then

updated. The design to evaluate at iteration n+ 1 is chosen based on this updated multifidelity surrogate.
This decision balances two different objectives. We are interested in (1) learning the function µ that approx-
imates µ and (2) minimizing µ by minimizing µ. The first objective corresponds to the exploration of the
design space while the second objective corresponds to the exploitation of the multifidelity surrogate learned
so far.

Expected Improvement with Single Information Source

In the case of a single IS f1, algorithms such as Efficient Global Optimization3(EGO) evaluate the design
that maximizes the expected improvement (EI). Given a training set D1 composed of L training points,
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the Gaussian process posterior distribution is computed. This defines, for any x in X , a random variable
Yx ∼ N (µ1(x), σ2

GP,1(x)). The EI at design x is then defined by:

EIY (x) = E [max(ymin − Yx, 0)] (11)

ymin = min
l∈{1,··· ,L}

f1(xl,1). (12)

The EI is known in closed form for Gaussian random variables:

EIY (x) = (ymin − µ1(x))Φ

(
ymin − µ1(x)

σGP,1(x)

)
+ σGP,1(x)φ

(
ymin − µ1(x)

σGP,1(x)

)
, (13)

with Φ the cumulative density function and φ the probability density function of the standard Gaussian
random variable.

Designs with large EI are likely to improve the objective function because (1) the posterior variance is
large (exploration) or because (2) the posterior mean is close to the minimum performance ymin evaluated
at iteration n (exploitation). This notion is also illustrated in Fig. 6.
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Figure 6: The blue circles are samples used to compute the posterior distribution of a Gaussian process. The
Gaussian process posterior mean µ1 is shown by the black solid line, and three times the posterior standard
deviation σGP,1 is shown by the grey shading. The minimum performance ymin is the left blue circle, also
shown by the black dashed line. At a given design x, the distribution of Yx is shown by the light red shading.
The solid red shading is the probability P(Yx ≤ ymin).

Extension of Expected Improvement to Multiple Information Sources

For the EGO algorithm to work, it is necessary that EIY (x) reduces to a value close to zero once x is
evaluated to avoid evaluating the same design at a future iteration. Thus, in our case it is not possible to use
the EI of Sx to pick xn+1, because the variance of Sx is lower bounded by σ2(x), leading to a strictly positive
lower bound for the EI. This motivates the definition of a new random variable Qx ∼ N (µ(x), σ̂2(x)), where
µ is the mean of the multifidelity surrogate and

σ̂2(x) =

(
M∑
m=1

1

σ2
GP,m(x)

)−1
. (14)

The random variable Qx has expected improvement EIQ(x):

EIQ (x) = (ymin − µ(x))Φ

(
ymin − µ(x)

σ̂(x)

)
+ σ̂(x)φ

(
ymin − µ(x)

σ̂(x)

)
, (15)

where ymin is the minimum of µ over the designs already evaluated at iteration n. Since σ2
GP,m(x) reduces

to close to zero if x is evaluated with the mth IS, EIQ(x) will also decrease to a small value. This permits
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the algorithm to avoid picking designs that have already been evaluated with at least one IS. Thus the next
design to evaluate is:

xn+1 = argmax
x∈X

EIQ(x). (16)

Selecting xn+1 requires solving the auxiliary optimization problem Eq. (16). The EI is only a function
of ymin, µ and σ̂, which are cheap to evaluate compared to evaluating the IS. However, EI is a multimodal
function of the design x (see Fig. 7 bottom right panel) and finding its maximizer can be a challenging
task. In particular, after a large number of iterations n of the multifidelity algorithm, using an optimization
algorithm to solve this auxiliary problem often requires finding an isolated peak in an almost flat domain (see
Fig. 8 bottom right panel). The design selected by a numerical optimization algorithm used to solve Eq. (16)
is likely to be in a flat region of the EI, providing a poor choice for exploration and exploitation. This
typically occurs when the EI is low across the design space, indicating that the multifidelity surrogate has
low uncertainty in regions that are believed to contain the minimizer. For this reason, when the maximum
EI found is lower than a threshold εei, we instead choose xn+1 to be the design minimizing the multifidelity
surrogate:

xn+1 = argmin
x∈X

µ(x). (17)

This corresponds to exploiting the multifidelity surrogate.

III.C. Choosing the Next Information Source to Query

Once the algorithm chooses a design xn+1 to evaluate at the next iteration, we use a heuristic to choose
mn+1, i.e., which IS to next query. We seek large information gain for a low evaluation cost and propose to
use the following heuristic:

mn+1 = argmin
m∈{1,··· ,M}

Cm(xn+1)

σ2(xn+1)− σ̃2
m(xn+1)

, (18)

σ̃2
m(xn+1) =

 1

σ2
f,m(xn+1)

+

M∑
i=1
i 6=m

1

σ2
t,i(xn+1)


−1

, (19)

where Cm(xn+1) is the evaluation cost of the mth IS at design xn+1, σ2(xn+1) the multifidelity surrogate
variance and σ̃2

m(xn+1) the multifidelity surrogate variance if the mth IS is known up to its fidelity at design
xn+1. The denominator quantifies how much information could be learned by evaluating the mth IS. Thus,
this metric selects the IS with large information gain and low evaluation cost. This is a two-step approach,
which first chooses the design and then the IS to query. A better approach might be that in Moore et al.,13

who choose the design and the IS at the same time by maximizing a value of information metric. In that
work, the authors note that the value of information tends to be maximized in the same design space region
for each IS. This suggests that the two-step approach of choosing the design and then the IS would lead to
similar results, although this should be investigated in future work.

Unconstrained 1D example

We now illustrate the key features of the algorithm on a one-dimensional unconstrained example. We consider
the design space X = [0, 1] and M = 2 information sources f1 and f2 (shown as red and green dashed lines
on Figs. 7–8). The best estimation of the real world process µ is shown as the black dashed line. The
evaluation cost of IS 1 and IS 2 are set to C1 = 100 and C2 = 1 (independent of the evaluated design) and
their respective fidelity variances change across the design space (±3σf,m is shown by the dark grey shading
on the left panels of Figs. 7–8). IS 1 is high fidelity near x = 0 but a low fidelity near x = 1. IS 2 is medium
fidelity across the design space. Fig. 7 shows the first iteration of the algorithm. The left panels show the
intermediate surrogates, their associated total and fidelity variances, and the samples used to construct the
surrogates. The top right panel shows the multifidelity surrogate and its variances. The bottom right panel
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is the expected improvement for the multifidelity surrogate. It is multimodal and a multistart optimization
method is able to find the maximum. Fig. 8 shows the iteration n = 10 of the algorithm. The multifidelity
surrogate minimum is close to the minimum of µ and is also designated by the location of the maximum EI.
At this iteration, finding this maximum is challenging.

The algorithm has evaluated the inexpensive IS 2 extensively, while the expensive IS 1 has only been
evaluated in the region close to the minimum or where its fidelity is high. It should be noted that there
is a large uncertainty in the intermediate surrogate of IS 1 in [0.4, 0.7] because IS 1 has not been queried
there. However, the intermediate surrogate of IS 2 has low uncertainty and is confident that this region does
not contain the minimum, so IS 1 is not queried. This leads to a reduction in the total evaluation cost of
the algorithm. This example illustrates how IS with varying fidelity and different costs can be exploited to
reduce the number of queries of the expensive IS.

III.D. Adding Constraints

We now consider the case in which the optimization is subject to inequality constraints. For ease of notation,
we consider the case in which there is only one quantity that must satisfy an inequality constraint. Each IS
provides a different estimation cm(x) of that quantity with a fidelity variance σ2

fc,m
(x). For any x in X , we

define the estimation of the real world constraint to be the random variable P
(c)
x ∼ N (µc(x), σ2

c (x)) such
that:

σ2
c (x) =

(
M∑
m=1

1

σ2
fc,m

(x)

)−1
(20)

µc(x) = σ2
c (x)

M∑
m=1

cm(x)

σ2
fc,m

(x)
. (21)

We can now define the optimization problem as:

x∗ = argmin
x∈X

µ(x) (22)

s.t. µc(x
∗) ≤ 0. (23)

Since the constraints cm are typically expensive to evaluate, we construct a multifidelity surrogate for the
estimation of the real world constraint µc. We define an intermediate surrogate for each IS, and characterize

it with a random variable S
(c)
x,m ∼ N (µc,m(x), σ2

tc,m(x)). Here, µc,m is the posterior mean of the Gaussian
process associated with cm, and σ2

tc,m is the sum of the posterior variance of the Gaussian process σ2
GPc,m

and the fidelity variance σ2
fc,m

. The multifidelity surrogate S
(c)
x ∼ N (µc(x), σ2

c(x)) of the constraint is the

fusion of the M random variables S
(c)
x,m, where µc and σ2

c are defined in Table 2. The multifidelity surrogate
for the constraint is also constructed adaptively.

RV Mean Variance

Best estimation of real world process P
(c)
x µc(x) = σ2

c (x)

M∑
m=1

cm(x)

σ2
fc,m

(x)
σ2
c (x) =

(
M∑
m=1

1

σ2
fc,m

(x)

)−1

Multifidelity surrogate S
(c)
x µc(x) = σ2

c(x)

M∑
m=1

µc,m(x)

σ2
tc,m(x)

σ2
c(x) =

(
M∑
m=1

1

σ2
tc,m(x)

)−1
Table 2: Comparison of means and variances of the random variables representing the best estimation of
the real world process and the multifidelity surrogate for the constraints. The intermediate surrogate of the
mth IS has mean µc,m and total variance σ2

tc,m.

Following Sec. III.B, the next design xn+1 is picked by maximizing the EI. This optimization is now
subject to constraints. Since there is uncertainty in the constraint surrogate, we use a loose constraint
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Figure 7: 1D unconstrained example: Iteration 1. Top left panel: intermediate surrogate of IS 1. Bottom
left panel: intermediate surrogate of IS 2. Top right panel: multifidelity surrogate. Bottom right panel:
Expected improvement of the multifidelity surrogate.
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Figure 8: 1D unconstrained example: Iteration 10. Top left panel: intermediate surrogate of IS 1. Bottom
left panel: intermediate surrogate of IS 2. Top right panel: multifidelity surrogate. Bottom right panel:
Expected improvement of the multifidelity surrogate.
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µc − 3σc ≤ 0 instead of the strict constraint µc ≤ 0; the search space defined by the loose constraint is
a superset of the one defined by the strict constraint. This avoids over-restricting the search space when
exploration is needed and the constraint surrogate is uncertain. As the constraint surrogate is updated, σc
reduces and the loose constraint becomes close to the strict constraint in regions that have been sampled
(see Fig. 10). The next design is found by solving:

xn+1 = argmax
x∈X

EIQ(x) (24)

s.t. µc(xn+1)− 3σc(xn+1) ≤ 0 (25)

where EIQ(x) is defined by Eq. (15) with ymin the minimum of µ over the designs already evaluated at
iteration n and satisfying the loose constraint. When the maximum EI found for this auxiliary problem is
smaller than the threshold εei, the next design xn+1 is chosen by minimizing the multifidelity surrogate µ.
Since this corresponds to exploiting the multifidelity surrogate, we use a strict constraint in this case:

xn+1 = argmin
x∈X

µ(x) (26)

s.t. µc(xn+1) ≤ 0. (27)

The choice of the IS to query is chosen in the same way described in Sec. III.C.

IV. Results

This section demonstrates the multifidelity optimization algorithm developed in Section II and Section III
on two different cases. The first case is a modified 2D Rosenbrock problem with a nonlinear constraint. The
second case is the minimization of the drag coefficient of a NACA 0012 airfoil subject to a constraint on the
lift coefficient.

IV.A. Rosenbrock with Constraints

IV.A.1. Problem Formulation

We demonstrate the key features of the algorithm on a two-dimensional constrained example. We consider
the design space X = [−2, 2]× [−2, 2] and M = 2 IS f1 and f2. IS 1 is the Rosenbrock function, while IS 2
is the Rosenbrock function with an added oscillatory component:

f1(x) = (1− x1)2 + 100
(
x2 − x21

)2
(28)

f2(x) = f1(x) + 0.1 sin(10x1 + 5x2). (29)

The two IS are similar except in the boomerang shaped valley, where the oscillatory term becomes more
significant as f1 is close to zero. We set the evaluation costs to be C1 = 1000 and C2 = 1. The fidelity
variances are set to σ2

f,1 = 10−3 and σ2
f,2 = 10−2.

The constraints are:

c1(x) = −x21 −
(x2 − 1)2

2
, (30)

c2(x) = c1(x) + 0.1 sin(10x1 + 5x2). (31)

The fidelity variances for the constraints are set to σ2
fc,1

= 10−3 and σ2
fc,2

= 10−2.
The two IS being analytical functions, we can afford to compute the minimizer x∗ of µ subject to

the constraint µc (i.e., the original problem defined by Eq. (23)) and use it to asses the performance of the
multifidelity algorithm. The multifidelity surrogate is initialized with 5 training points for IS 1 and 5 training
points for IS 2, chosen at random.

IV.A.2. Results

The results of the multifidelity optimization are shown in Fig. 10. Most of the evaluations are computed
in the valley with the cheap IS 2 (Fig. 9). The expensive IS 1 is only evaluated in the valley, close to the
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minimizer x∗ of µ where an IS with high fidelity is required. The minimizer of the multifidelity surrogate
at the final iteration x∗ is shown by the yellow star and is close to x∗ = [0.58, 0.34] (not plotted). The
feasible space is approximated well in the regions densely sampled and in particular near the multifidelity
surrogate minimizer. The feasible space based on the loose constraint µc − 3σc, shown as the light blue
shading, collapses to the feasible space based on the strict constraint µc near the minimizer, because σc is
close to σc = 0.03 (i.e., the contribution to the variance from the GP model of the constraint is close to 0).
Recall from Section III.D that once the maximum EI found is lower than the threshold εei = 10−5, the next
design is chosen to satisfy the strict constraint by solving the surrogate-based optimization problem defined
in Eqs. (26) and (27). Hence, the final solution x∗ also satisfies the strict constraint.
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Figure 9: 2D constrained Rosenbrock example. 3D visualization of the multifidelity surrogate.

Fig. 11 (top left panel) shows the distance between the minimizer x∗ of the estimation of the real world
process µ and the minimizer x∗n at iteration n of the multifidelity surrogate mean µ as a function of the
iteration n. The expensive IS 1 is queried for the first time after more than 60 iterations. Most of the
evaluations are made with the cheap IS 2. The distance ||x∗k − x∗||, where x∗k is the minimizer of µ subject
to the strict constraint at the kth query of the expensive IS 1, drops to approximately 10−3 in about
25 evaluations of IS 1 (Fig. 11 top right panel). The multifidelity surrogate mean value µ(x∗k) is a good
approximation of µ(x∗k), which lies in the ±3σ(x∗k) bars (Fig. 11 bottom right panel). The bias between
µ(x∗k) and µ(x∗k) seen in Fig. 11 bottom right panel is due to training points far from x∗k that influence
the multifidelity surrogate mean through a large characteristic length scale. This suggests that, once the
minimizer is trusted to be in a small region, a new multifidelity surrogate should be constructed using only
the subset of training points included in the neighborhood of the minimizer. The optimization would be
restricted to that small region and the multifidelity surrogate would be updated as new training points are
computed. This could potentially be achieved through use of a trust region framework.

IV.A.3. Comparison with the Efficient Global Optimization Algorithm

The proposed multifidelity optimization algorithm is compared to the EGO algorithm3 on the problem
defined by Eqs. (22) and (23). We allow EGO to query µ (which involves evaluating f1 and f2) and µc
(which involves evaluating c1 and c2) at each iteration. We also initialize EGO with a larger training set
than the multifidelity algorithm, composed of the designs of both the initial training sets of IS 1 and IS 2
evaluated at µ. Given those two advantages: access to evaluation of µ (instead of µ) and a larger initial
training set, the EGO algorithm performance is assessed. Fig. 11 (bottom left panel) shows the distance
||x∗−x∗k|| as a function of the number of IS 1 evaluations k, where x∗k is the minimizer of the EGO surrogate
subject to the strict constraint µc ≤ 0 after k evaluations of the expensive IS 1 (necessary to evaluate µ).
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Figure 10: 2D constrained Rosenbrock example. 2D visualization of the loose and strict feasible space and
evaluated design locations.
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Figure 11: Convergence plots of the multifidelity optimization algorithm for the 2D constrained Rosenbrock
problem.

The multifidelity algorithm and EGO both converge to the solution within a tolerance of 10−3. In this
particular example, the multifidelity surrogate only requires 25 expensive evaluations of IS 1 to reach that
tolerance, compared with 210 evaluations of IS 1 for EGO. This convergence acceleration is the consequence
of leveraging the information provided at cheap cost by IS 2. A more complete study of the impact of the
fidelity variances on the convergence is necessary before drawing general conclusions about the performances
of the multifidelity algorithm compared to EGO.
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IV.B. NACA 0012 Drag Coefficient with Lift Coefficient Constraints

IV.B.1. Problem Formulation

We apply the proposed multifidelity algorithm to a two-dimensional constrained aerodynamic design example.
We seek the Mach number M and angle of attack α that minimize the drag coefficient CD of a NACA 0012
airfoil subject to a lift coefficient CL larger than 0.4. We consider the design space X = IM × Iα with
IM = [0.1, 0.5] and Iα = [0.01◦, 8◦]. Two information sources are available: SU2 with viscous terms (IS 1)
and XFOIL (IS 2) can each compute both CD and CL. The evaluation of SU2 requires about one hour of
computation while XFOIL can be evaluated in less than a second. Thus we set the evaluation costs to be
C1 = 3600 and C2 = 1. The fidelity variances are set to σ2

f,1 = 1 and σ2
f,2 = 10. The fidelity variances

for the constraints are also set to σ2
fc,1

= 1 and σ2
fc,2

= 10. The multifidelity surrogate is initialized with
5 designs chosen at random for each IS. The number of iterations of the algorithm is limited to 300 with a
maximum of 10 evaluations of SU2. This corresponds to a scenario where the expensive IS is given a fixed
computational budget.
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Figure 12: Visualization of the feasible domain and the location of the evaluated designs.

IV.B.2. Results

The first iterations are queried is the infeasible space, and as the constraint is learned, the search space is
reduced: the standard deviation σc is close to zero where M < 0.2 and α ≈ 0.4 (see Fig. 12). The constraint
is not learned (the dashed and dotted lines are not close in space Fig. 12) where the domain is not sampled
(i.e. M > 0.3), this corresponds to regions unlikely to contain the minimum. Finally the evaluations are
restricted to the feasible domain, near M = 0.1 and α ≈ 4◦, where a minimum is likely to be present. The
optimization stopped after reaching the maximum number of evaluations of the expensive IS 1 (SU2). It
completed 10 queries to IS 1 (SU2) and 194 queries to IS 2 (XFOIL). The intermediate surrogates at the final
iteration (Figs. 13a,13c) for the drag coefficient are computed. SU2 predicts a lower drag coefficient than
XFOIL. The multifidelity surrogate (Fig. 13e) gives more weight to the SU2 intermediate surrogate based
on the fidelity variances. The intermediate surrogates (Fig. 13b,13d) for the lift coefficient are computed
and the two information sources provide similar predictions. The border between the feasible and infeasible

domains as predicted by the mean µc(x) of the multifidelity surrogate S
(c)
x is shown by the solid black line in

Fig. 13f. The solution of the problem (see Fig. 12) is the the lowest Mach number allowed by box constraints
and the lowest angle of attack satisfying the lift coefficient requirement: x∗ = (0.1, 3.870◦). This result is
obtained with 15 evaluations of the CFD code SU2 (5 initial points and 10 calls during the optimization).
In the multifidelity optimization, the cheap-to-evaluate IS 2 (XFOIL) is used to explore the design space,
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while the expensive IS 1 (SU2) is only used to refine the results. Significant parts of the design space are not
evaluated with SU2, because they are unlikely to contain the minimum. Thus, the multifidelity optimization
algorithm finds a good approximation x∗ of x∗ with a reduced evaluation cost.
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(a) µ1 (103 × CD) computed with SU2
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(b) µc,1 (CL) computed with SU2

M

0.100.150.200.250.300.350.400.450.50

α

0
1

2
3

4
5

6
7

8

µ
2

0

10

20

30

40

50

(c) µ2 (103 × CD) computed with XFOIL
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(d) µc,2 (CL) computed with XFOIL
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(e) Multifidelity surrogate mean µ (103 × CD)
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Figure 13: Intermediate and multifidelity surrogate mean for the objective function CD and the constraints
CL using SU2 and XFOIL.
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V. Conclusions

This work has proposed a method to perform optimization when several information sources, all mapping
from the same design space to the same quantity of interest, are available. This is achieved by constructing
a multifidelity surrogate that can leverage past information, and incorporate evaluations of different IS into
a single, cheap-to-evaluate surrogate. This multifidelity surrogate is built adaptively without using the
common assumption of hierarchical IS. Instead, each IS is endowed with a fidelity that can vary across the
design space. We leverage this multifidelity surrogate in an optimization algorithm. The proposed strategy
samples the design space balancing two competing objectives: exploitation of the surrogate, and exploration
to improve the surrogate. The proposed algorithm does not require evaluating each IS at every iteration,
yielding evaluation cost reduction. The IS to evaluate is chosen based on a heuristic that balances potential
information gain and evaluation cost. The evaluation cost reduction of the proposed algorithm has been
demonstrated on an analytical problem and an aerodynamic problem.
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