
Explicit Model Predictive Control for

Large-Scale Systems via Model Reduction

Svein Hovland∗ and Jan Tommy Gravdahl†

Norwegian University of Science and Technology, N-7491 Trondheim, Norway

and

Karen E. Willcox‡

Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

In this paper we present a framework for achieving constrained optimal

real-time control for large-scale systems with fast dynamics. The methodol-

ogy uses the explicit solution of the model predictive control (MPC) prob-

lem combined with model reduction, in an output-feedback implementation.

The explicit solution of the MPC problem leads to online MPC function-

ality without having to solve an optimization problem at each time step.

Reduced-order models are derived using a goal-oriented, model-constrained

optimization formulation that yields efficient models tailored to the control

application at hand. The approach is illustrated on a challenging large-

scale flow problem that aims to control the shock position in a supersonic

diffuser.

I. Introduction

With the increasing interest in fluid flow control over the last decade, there arises a need

for control methodology that can achieve constrained optimal real-time control of distrib-

uted systems with fast dynamics, such as in mechatronics, MEMS, rotating machinery and

acoustics. Computational fluid dynamic (CFD) models of such systems typically have order
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exceeding 104, which is prohibitive for model-based controller design. In order to achieve

real-time control, the control structure must be capable of computing the control input

faster than the sampling rate of the system. Therefore, we need approximate simulation

models that are of sufficiently low order for control design, and a framework for coupling the

controller with the plant based on the approximate models, while accounting for the error

inherent in the approximate model.

While considerable progress has been made in the development of reduced-order models

for flow control applications, their application in the constrained optimal control setting

has remained out of reach for complex flow applications, due to a need for models of very

low order that target the control problem at hand. Here, we present a new framework for

achieving real-time constrained optimal control for large-scale systems with fast dynamics

that exploits recent advances in a goal-oriented model reduction methodology and explicit

model predictive control (eMPC). Demonstrating the feasibility of such control problems

is essential if reduced-order modeling methods are to be adopted onboard actual aerospace

systems.

Model predictive control (MPC) is a control strategy that has been widely adopted in

the industrial process control community and implemented successfully in many applications.

The greatest strength of MPC is the intuitive way in which constraints can be incorporated

in a multivariable control problem formulation. However, the traditional MPC strategy

demands a great amount of online computation, since an optimization problem (often a

constrained quadratic program) is solved at each sampling time. This has limited the use of

these controllers to processes with relatively slow dynamics.

It has recently been shown that a great deal of the computational effort in traditional

MPC can be done offline. Algorithms have been presented for solving multiparametric

quadratic programs (mpQPs) that are used to obtain explicit solutions to the MPC prob-

lem.1,2 Thus, the explicit model predictive controller accomplishes online MPC functionality

without solving an optimization problem at each time step. This has several advantages:

1) The online computational time can be reduced to the microsecond–millisecond range,

which makes eMPC attractive for the fast systems discussed above, and 2) MPC functional-

ity is achieved with low complexity, easily verifiable real-time code, justifying the employment

of eMPC in embedded and safety-critical systems. However, the use of eMPC is critically

dependent on having a system model of low order, typically with a maximum of ten states.

For CFD applications, this motivates a need for model order reduction methodology that

can provide reduced models of very low order, that at the same time are suitable for control.

Model reduction for control of large-scale systems has been considered in a number of

settings.3–8 MPC based on a linear reduced model derived from a CFD model using proper

orthogonal decomposition (POD) has been demonstrated to perform well for the control of
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an industrial glass-feeder.9 In that work, it is stated that in order to use the reduced-order

simulation models for the glass-feeder control in practice, the models should be at least 100

times faster than real time. In order to achieve this challenging goal, very low order models

that target the control problem at hand are needed. One recently proposed approach to

achieve this is the OS-POD method, which generates reduced models for control by iteratively

computing a POD basis that targets the closed-loop optimality system.10 Another recently

proposed approach is to determine the reduced model by solving a goal-oriented optimization

problem.11

The contribution of this paper is twofold: 1) We propose an approach for achieving con-

strained optimal control in applications that are described by models of high order, while

being characterized by fast sampling rates, by combining a goal-oriented model reduction

method with the explicit solution to the MPC problem. We attach the control structure

to the plant with a Kalman filter that accounts for the error introduced in the model ap-

proximation process. 2) We demonstrate the performance of reduced models obtained by

goal-oriented optimization in control system design.

The paper is organized as follows. Section II describes MPC and the explicit solution

via multiparametric quadratic programming. In Section III we describe the goal-oriented

reduction method, and discuss reduced-order output-feedback control, closed-loop issues and

state estimation. The proposed methodology is then demonstrated for a realistic example in

Section IV. Throughout the paper, positive (semi) definiteness of matrices is indicated by

≻ 0(� 0).

II. MPC and the Explicit Solution

A brief outline of the standard MPC formulation will be given before we address the

explicit solution. For further reading on MPC, there exists a number of books [12, page 36-

246], [13, page 3-219] and tutorials.14

A. A Standard MPC Formulation

Model predictive control is formulated for a discrete-time state-space model

xk+1 = Adxk + Bduk, (1a)

yk = Cdxk, (1b)

where k ∈ Z, and xk ∈ R
n, uk ∈ R

m and yk ∈ R
p denote the state, input and output,

respectively, at step k. The constant matrices Ad, Bd and Cd are of appropriate dimensions,

and (Ad, Bd) is a controllable pair. For the regulator problem, the model predictive controller
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solves at time step k the optimization problem

min
Uk

{

xT
k+N|kPxk+N|k (2a)

+
N−1
∑

i=0

(

xT
k+i|kQxk+i|k + uT

k+iRuk+i

)

}

subject to:

umin ≤ uk+i ≤ umax, i = 0, . . . ,M− 1 (2b)

ymin ≤ yk+i ≤ ymax, i = 1, . . . ,N (2c)

uk+1 = Kxk+i|k , M≤ i ≤ N − 1 (2d)

xk|k = xk (2e)

xk+i+1|k = Adxk+i|k + Bduk+i, i ≥ 0 (2f)

yk+i|k = Cdxk+i|k, k ≥ 0, (2g)

where P and Q are design weighting matrices of appropriate dimensions that penalize devi-

ation from zero of the states xk+i at the end of the prediction horizon N and over the entire

horizon, respectively. In this work, the final cost matrix P and gain K are calculated from

the algebraic Riccati equation, under the assumption that the constraints are not active for

k ≥ N . The weight R penalizes use of control action u. The notation (·)k+i|k is used to

emphasize that the predictions (·)k+i are made based on the value at step k. M defines the

control horizon, which is the number of future control moves to be optimized. In this work,

we setM = N , for convenience. The sequence Uk =
[

uT
k uT

k+1 . . . uT
k+M−1

]T

contains the

future control inputs that yield the best predicted output with respect to the performance

criterion on the prediction horizon. Once this set has been found, the first control input

uk is applied to the process, before the whole optimization problem is re-solved at the next

sample. The optimization problem is then slightly different, having been updated by a new

process measurement, a new starting point and an additional time slice at the end of the

time horizon.

B. Explicit MPC via Multiparametric Quadratic Programming

Sensitivity analysis is a technique used to describe how the solution to a mathematical pro-

gram changes with small changes in the problem parameters. Closely related is parametric

programming, where the solution is found explicitly for a range of parameter values. Math-

ematical programs that contain more than a single parameter are commonly referred to as

multiparametric programs [15, page 1-2].
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It is well established that implementing a linear model predictive controller requires

solving a quadratic program (QP) in Uk at each time step.12 With some manipulations, the

problem in (2) can be written

min
Uk

{

1

2
UT

k HUk + xT
k FUk

}

(3a)

subject to: GUk ≤W + Exk, (3b)

where the matrices H , F , G, W and E are functions of the weighting matrices P , Q, R

and the bounds umin, umax, ymin and ymax. If the weighting matrices in (2a) satisfy P � 0,

R ≻ 0 and Q � 0, then H ≻ 0 and the problem is strictly convex. The Karush-Kuhn-Tucker

conditions (KKT) are then sufficient conditions for optimality [16, page 333], and the solution

Uk can be shown to be unique.1 The assumptions on Q and R are usually met by choosing Q

and R to be diagonal matrices that appropriately penalize the relative importance of state

or input values. The problem (3) can be viewed as an mpQP in Uk, where xk is a vector of

parameters.

By defining

z , Uk + H−1F T xk, (4)

the problem in (3) can be transformed into

min
z

{

1

2
zT Hz

}

(5a)

subject to: Gz ≤ W + Sxk, (5b)

which is an mpQP in z, parameterized by xk. The matrix S is found as S = E + GH−1F T .

By considering the KKT conditions of this quadratic program in z, the solution z∗ is seen to

remain optimal in a neighborhood of xk where the active set remains optimal. The region

in which this active set remains optimal can be shown to be a polyhedron in the parameter

space (that is, the state space).1 The mpQP in z can be solved offline for the state space area

of interest. Computing the control input at a time step k then becomes a straightforward

task: Given the system state xk, the optimal control inputs Uk are obtained through an

affine mapping,

Uk = Kixk + ki, i = 1, . . . ,Np (6)

where Np is the number of polyhedral regions and the subscript i denotes the ith affine

function. Ki and ki are constant within each polyhedral region in the parameter space.

The online effort is thus reduced from solving a potentially large optimization problem at

each time step to evaluating a piecewise affine function of the current state, by determining
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the region i in which the current state xk resides. By implementing the piecewise affine

function as a binary search tree, the online computational time is logarithmic in the number

of polyhedra in the state space partition.17

III. Reduced-Order Control

Implementing MPC or eMPC directly on the high-fidelity model is infeasible in large-scale

settings, for instance when working with models obtained from CFD analysis. We therefore

use reduced-order control, where reduced-order models are used to design output-feedback

explicit model predictive controllers for the high-fidelity model.

The goal of model reduction is to derive a model of low order that preserves the input-

output behavior of the high-fidelity model. In addition, one may wish to preserve specific

properties of the high-fidelity model, such as stability and passivity. In the control com-

munity, algorithms such as optimal Hankel model reduction18–20 and balanced truncation21

are known to have strong guarantees on the quality of the reduced model by providing

upper bounds for the approximation error. Although recent and ongoing research address

the extension of these algorithms to large-scale settings,22–25 model reduction of very large-

scale models with rigorous guarantees on quality remains a challenge. In addition, balanced

truncation is limited to linear systems.

Model reduction for control is somewhat different from model reduction for simulation

purposes. A reduced model that yields a good approximation of the high-fidelity model in

open loop may not necessarily provide a good approximation in the closed loop, since the

system dynamics change once the feedback loop is closed. One way to address this problem

is to perform model reduction and control design iteratively,6,10, 26, 27 in an attempt to ap-

proximate the closed-loop dynamics of the high-order model. Another common approach is

to use frequency weighting in order to emphasize the importance of approximation quality

in the bandwidth of the closed-loop system.

POD has been used with success in control of large-scale models, including some non-

linear applications. However, there are several limitations associated with using the POD;

in particular, POD-based reduced models lack the quality guarantees of those derived using

more rigorous methods such as balanced truncation. Even in the case of stable LTI systems,

reduction via POD can lead to undesirable and unpredictable results, such as unstable re-

duced models. A recently proposed goal-oriented model-constrained reduction algorithm11

is targeted at large-scale applications in optimal control and optimal design. This approach

retains applicability to nonlinear systems, but addresses some of the limitations of the POD

by targeting the projection basis to output functionals of interest, and by bringing addi-

tional knowledge of the reduced-order governing equations into the construction of the basis.
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Formulation of the problem of determining the basis as an optimal control problem has also

been considered for distributed parameter systems.28 In this section, we briefly present the

model reduction methodology and then describe the reduced-order control framework that

uses eMPC.

A. Goal-Oriented Model-Constrained Reduction

Order reduction of the discretized LTI system (1) can be achieved using a projection frame-

work, which assumes that the state xk is approximated by a linear combination of r basis

vectors

xk ≈ Φxrk
, (7)

where xrk
∈ R

r is the reduced state at step k and Φ ∈ R
n×r is a projection matrix containing

as columns the r basis vectors φ1, φ2, . . . , φr. Substituting (7) into (1), and requiring the

resulting residual to be orthogonal to the space spanned by Φ gives the reduced model

xrk+1
= Arxrk

+ Bru (8a)

yrk
= Crxrk

, (8b)

where Ar = ΦT AdΦ ∈ R
r×r, Br = ΦT Bd ∈ R

r×m, Cr = CdΦ ∈ R
p×r and yrk

is the output of

the reduced model.

In the goal-oriented model-constrained algorithm, an optimization problem is solved to

determine the basis. The optimization problem seeks to find the rth-order basis Φ ∈ R
n×r

and the corresponding reduced-order state solution xrk
∈ R

r, k = 1, 2, . . . , T so that the

square of the L2-norm of the error between the full-order and reduced-order output is min-

imized for a selected set of inputs, over some time horizon T . This can be formulated as

min
Φ,xr

1

2

S
∑

ℓ=1

T
∑

k=1

(

yℓ
k − yℓ

rk

)T (

yℓ
k − yℓ

rk

)

+
β

2

[

r
∑

j=1

(

1− φT
j φj

)2
+

r
∑

i,j=1,i6=j

(

φT
i φj

)2

]

(9a)

subject to:

ΦT Φxℓ
rk+1

= ΦT Aℓ
dΦxℓ

rk
+ ΦT Bℓ

du
ℓ
k, ℓ = 1, . . . ,S, k = 1, . . . , T , (9b)

Φxℓ
r1

= xℓ
0, ℓ = 1, . . . ,S, (9c)

yℓ
rk

= Cℓ
dΦxℓ

rk
, ℓ = 1, . . . ,S, k = 1, . . . , T . (9d)

The summation over ℓ in the objective function permits one to consider a finite set of S

instantiations of the governing equations (1) that could arise from variations in the coefficient

matrices Ad, Bd and Cd, the input u, or the initial state x0. The superscript ℓ thus denotes
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the ℓth instance of the system, which has corresponding state xℓ, input uℓ, and output yℓ.

For example, where (1) represents a (spatially and temporally) discretized partial differential

equation (PDE), these variations could stem from changes in the domain shape, boundary

conditions, coefficients, initial conditions or sources of the underlying PDEs.

The key differences between the formulation (9) and the POD are that (1) the model-

constrained optimization approach enforces the reduced-order governing equations as con-

straints, and (2) the cost is targeted to minimize the output error, while the POD minimizes

the error of state prediction over the entire domain. Thus, using the model-constrained

optimization approach, reduced models are obtained that are more suitable for use in an

output-feedback implementation. This is achieved by overcoming reduced model stability

problems such as those observed for the POD,11 and by yielding accurate models of very low

order through targeted prediction of system outputs.

The second term in the cost function (9a) is a regularization term to yield orthonormal

basis vectors, with β as a regularization parameter. This regularization acts only in the

null space of the projected Hessian matrix of the first term of (9a). Therefore, the reduced

output approximation, yr, is unaffected by the regularization term, yet the conditioning

of the optimization problem is improved. Note, however, that there remains a null space

of the projected Hessian matrix that admits arbitrary rotations of the basis vectors; the

optimization method chosen to solve (9) should therefore be tolerant of singular projected

Hessian matrices.

The formulation defined by equations (9) provides a mathematical definition of the desired

optimal basis; however, in practice this optimization problem may not be tractable for large-

scale problems. In a computationally efficient implementation of the method,11 the basis

functions are assumed to be a linear combination of the collection of full-state snapshots.

Then, the number of optimization variables is reduced to Mr, where M is the number

of snapshots and r is the dimension of the reduced state. As a consequence, neither the

gradient computation nor the optimization step computation (which dominate the cost of

an optimization iteration) scale with the full system size n.

Determining the basis via the optimization procedure will in general be more compu-

tationally demanding than using POD. However, this additional offline cost is a tradeoff

that we make in order to achieve sufficiently low order in the reduced models so that eMPC

becomes tractable for challenging flow control problems.

B. eMPC Control Setup

The control setup of the eMPC framework that uses the reduced-order model is illustrated

in Figure 1.

The complexity of the proposed control scheme is given by the offline model reduction
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Figure 1. Block diagram of the output-feedback setup. In this case x̂r is an estimate of the
reduced state xr based on an observer using the reduced model (ROM) and measurements
from the CFD model (FOM).

cost plus the cost of solving the eMPC problem offline for the reduced model. The former is

determined by the number of optimization variables in the optimization problem (9), which

is Mr, as well as the cost of solving the high-fidelity model (to generate the snapshots and to

compute the gradient information required by the optimizer). The cost of solving the eMPC

problem is problem dependent, but increases rapidly with the number of parameters, the

length of the control horizonM, and the number of constraints in the mpQP. For problems

whose solutions consist of a large number of regions, one can easily run into numerical

problems. Also, the memory required to store the eMPC solution online increases rapidly as

the size of the solution grows. A large number of polyhedra in the online solution requires

a large search tree with many nodes, which entails a longer searching process which might

compromise real-time requirements. The scheme is therefore limited to cases where the

reduced models can be made reasonably small, typically with around ten states.

Further complexity reduction techniques, such as input blocking, can be used to make

the eMPC procedure more tractable in cases where the problem is large.

C. Reduced State Estimation

The eMPC control input is computed based on the reduced state vector at every iteration,

and xr must therefore be estimated by an observer, based on the output of the CFD model. In

systems with output constraints, it is particularly important that the output of the reduced

model is a good estimate of the plant output. The observer should therefore account for the

approximation error in the reduced model.

A basic linear observer, such as the Luenberger observer, does not account explicitly

for uncertainties that are amplified by the observer gain matrices. Consequently, the state

estimate may not be accurate enough in the presence of model perturbation. We therefore

follow common practice in the literature,29,30 and use a Kalman filter, which is known to
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have desirable properties for systems with noise in outputs and state equations. The Kalman

filter can be defined in terms of the discretized reduced model

xrk+1
= Arxrk

+ Bruk + Γwk (10a)

yrk
= Crxrk

+ vk, (10b)

where vk and wk are assumed to be zero mean white noise processes with covariance matrices

Rk = RT
k ≻ 0 and Qk = QT

k ≻ 0, respectively, and where Γ defines the mapping between

wk and the states. In this setup, the noise processes account for uncertainty in the state

equations through Γwk, and the uncertainty in the output through vk.

D. Stability, Feasibility and Constraint Fulfillment

A number of questions regarding robust stability, feasibility and robust constraint fulfillment

arises when the reduced model is used to control the high-order model. Such robustness

analysis is an active research subject per se, and it is outside the scope of the current paper.

We therefore use the nominal model (the reduced model) for controller design, and address

certain robustness issues during the design stage in Section IV. In this section we will point

to other possible solutions to the robustness problems.

Since the explicit MPC solution is equivalent to the standard MPC solution obtained by

solving (2), many methods for robust stability analysis techniques developed for standard

MPC31 can be used to conclude stability for the reduced-order eMPC in the presence of the

uncertainty introduced through the model reduction process.

There are in general two approaches for addressing robustness in MPC. In the first

approach, the plant uncertainty is expressed by allowing the state-space matrices to be arbi-

trarily time-varying and belonging to a polytope.32 Recent contributions include triple mode

MPC algorithms that allow large feasibility regions.33 In the second approach, the plant is

assumed to be known, and a bounded unmeasured disturbance is introduced in the state

equations (1). MPC stability in the presence of model uncertainty has been addressed in

Refs. 34–36, and tests for robust MPC stability of input-constrained systems with unstruc-

tured uncertainty have recently been established.37 The applicability of these methods to

establish robustness in the context of MPC with reduced-order models remains a challenging

open research question.

Given the uncertainty introduced through the model reduction process, one cannot guar-

antee that feasibility of the underlying optimization problem is maintained and that the

constraints on the states/outputs are fulfilled. This problem is handled through the use

of soft constraints in Section IV-C. Relaxing the state constraints in effect removes the

feasibility problem, at least for stable systems.31
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IV. Numerical Results

The following example is a challenging model reduction problem with n = 11, 730 states,

where the objective is to control the position of a shock in a supersonic inlet. The problem is

based on an unsteady CFD formulation to simulate subsonic and supersonic flows through a

jet engine inlet that is designed to provide a compressor with air at the required conditions.38

A. Control Problem Setup

The control setup is shown in Figure 2. In nominal flow conditions, a strong shock sits

downstream of the inlet throat. In order to stabilize the shock position in the presence of

incoming flow disturbances, and thus prevent engine unstart, active flow control is effected

through flow bleeding upstream of the throat. The case considered has a steady-state Mach

Figure 2. Active flow control setup for the supersonic inlet.38

number of 2.2. The flow is assumed inviscid and is modeled by the Euler equations. The

underlying CFD code is nonlinear, and the model is linearized about a steady-state solution,

giving a stable continuous-time model of the forma

Eẋ = Ax + Bu, (11a)

y = Cx, (11b)

where the continuous-time state x(t) contains the n unknown perturbation flow quantities at

each point in the computational grid, and the matrices A, B, C and E result from the CFD

spatial discretization of the Euler equations. The vector u ∈ R
2 is the input to the system

and y ∈ R contains the system output. In this case, the flow state quantities are density,

flow velocity components and enthalpy, and the output y is the average Mach number at

the throat. There are 3, 078 grid points in the computational domain, giving a total of

n = 11, 730 unknowns. The descriptor matrix E is sparse, and some rows contain only zeros;

consequently, E is singular and the inlet model represents a general differential algebraic

aThe system matrices are available in the Oberwolfach Model Reduction Benchmark Collection.
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equation system. The input u contains bleed actuation b (manipulated variable) and an

incoming density disturbance d, i.e.

u ,





b

d



 . (12)

A discrete-time system is obtaining by applying a backward Euler time integration method

to (11). The general projection framework for model reduction described in Section III-A

can then be applied.

The high order of the model (11) is prohibitive for optimal and model-based control,

which motivates the use of model reduction. It should be noted that this benchmark is

relatively difficult to approximate. Various model reduction methods have been applied to

this problem with varying degrees of success. As shown in Ref. 39, POD and Krylov-based

methods yield reduced models that are unstable, unless the sampled frequencies are chosen

very carefully. One reason for this may be that there are inverse responses from the inputs

to the output, suggesting non-minimum phase. Non-minimum phase systems are harder to

approximate than minimum phase systems.40 Balanced truncation is guaranteed to produce

stable models, but is difficult to apply in this case due to the singular descriptor matrix

E. Good results were shown using the Fourier model reduction approach;39 however, that

method is applicable only to linear systems.

The optimization methodology described in Section III-A is extendable to nonlinear sys-

tems, and also is likely to yield stable reduced models, since the objective function includes

the actual error between full and reduced models. Therefore, the optimization approach is

used here to approximate the input/output relationship between the two inputs u and the

output y for the inlet example. The model reduction procedure handles reduction of MIMO

system models in a straightforward manner through the framework for parametric variations

described in Section III-A.

The eMPC framework can be extended naturally to handle disturbances such as the

density disturbance. In the controller, we obtain a reduced-order prediction model of the

form

x̂rk+i+1
= Arx̂rk+i

+ Bb
rbk+i + Bd

rdk+i|k (13a)

ŷrk+i
= Crx̂rk+i

; i ≥ 0, (13b)

where Bb
r and Bd

r are the columns of Br corresponding to the inputs b and d, respectively, and

i = 1, . . . ,N is the ith step on the prediction horizon. We assume that the disturbance dk is

measured, and we use the notation dk+i|k to emphasize that the disturbance dk+i, given the

measured value at time step k, is predicted based on an assumption on the future behavior of

the disturbance. If we assume that the disturbance is constant over the prediction horizon,
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one straightforward way to implement the prediction model (13) is to augment the state

vector and the system matrices as follows:

x̂rk
←





x̂rk

dk



 , (14)

Ar ←





Ar Bd
r

0 1



 , (15)

and

Cr ←
[

Cr 0
]

. (16)

To avoid numerical difficulties (the augmented system is marginally stable if we set dk+1 =

dk), we replace the 1 in equation (15) with a scalar δ, and typically choose δ = 0.99.

Now, the control structure can be summarized as follows:

• The Mach number is measured using the output equation

yk = Cxk. (17)

• The reduced state is estimated using a Kalman filter based on the reduced-order model

and the output of the CFD model.

• The reduced state estimate is fed to the explicit model predictive controller along with

the measured disturbance, where the bleed input bk is found as an explicit function of

the augmented state (14).

• Control is effected through upstream bleed.

For all results presented in the following, the inlet model is discretized with a time step

of ∆t = 0.025 s. The controllers are verified to be sufficiently fast for this example.

B. Model Reduction Results

In order to test the model reduction algorithm, we compare time-domain and frequency-

domain responses for the CFD model and models of reduced order. We consider a reduced

model with 10 states, which was the lowest order that gave sufficient approximation quality.

The optimized basis is found by minimizing the output error for 200 samples in the interval

t ∈ (0, 2) s in response to a step in each of the two inputs. That is, first we set b ≡ 1 and

d ≡ 0 and collect 200 samples in the time interval, and then we re-initialize the model, set

b ≡ 0 and d ≡ 1 and collect another 200 samples in the same time interval. We use the
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POD basis vectors generated from the snapshot data as an initial guess for the optimization

algorithm. Comparisons with POD reduced models themselves are not given, since for this

example instability of POD reduced models is observed over a wide range of reduced-order

state dimensions, prohibiting the use of POD for the reduced-order controller design.

The transfer functions from bleed b to output y are shown in Figure 3 for the CFD model

and the reduced model obtained with an optimized basis. Figure 4 illustrates the same
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Figure 3. Comparison of transfer function from bleed b to Mach number y for the CFD model
(11,730 states) and the reduced model of order r = 10.

comparison for the transfer function from disturbance input d to output y. The transfer

function from the disturbance to the output shows that the dynamics contain a delay, and

are consequently more difficult for the reduced-order model to approximate. The reduced-

order model is accurate for lower frequencies, but does not capture the disturbance response

at higher frequencies. However, these higher frequencies are unlikely to occur in typical

atmospheric disturbances;39 thus, the reduced model performance shown in Figures 3 and 4

is deemed acceptable for the purposes of controller design. Figure 5 shows the time-domain

responses to a step in bleed actuation and a Gaussian density disturbance input. The

frequency content of this disturbance input is representative of that expected in practical

flight conditions. It can be seen that the reduced model accurately predicts the time-domain

response, confirming its suitability for conditions of practical interest.
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Figure 4. Comparison of transfer function from disturbance d to Mach number y for the CFD
model (11,730 states) and the reduced model of order r = 10.
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Figure 5. Top: Response in Mach number y to step in bleed input b for the CFD model
(11,730 states) and the reduced model of order r = 10. Bottom: Response in Mach number y

to Gaussian disturbance input d for the CFD model and a reduced model of order r = 10.
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Case Λ α tp

1 0.01 2f 2
0 5

2 0.02 2f 2
0 5

3 0.04 2f 2
0 5

Table 1. Disturbance parameter values for different simulation cases.

C. Closed Loop Results

The disturbance input is set to be a Gaussian distribution, which is described by its amplitude

Λ, rise time α and peak time tp through the relation

d (t) = −Λρ0e
−α(t−tp)2. (18)

In the following, we address the controller robustness by tuning its performance for a set of

disturbances for which the linear model is a good representation of the nonlinear CFD model.

(Note that the linearized CFD model is only valid for small perturbations from steady-state

conditions.) Subsequently, we add measurement noise to account for errors in the Mach

number measurements. The parameter values for the disturbance inputs are shown in Table

1, and the different disturbance cases are shown in Figure 6.
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Figure 6. Magnitude of disturbance inputs used in Cases 1-3.

The computed control input bk is in fact a perturbation about the nominal steady state

bleed bss of 1% of the inlet mass flow,

btotal = bss + bk. (19)
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We therefore require that the total bleed btotal is non-negative, i.e.

bk+i ≥ −0.01; i ≥ 0. (20)

We also put an upper bound on the control action,

bk+i < bmax; i ≥ 0, (21)

and we bound the Mach number at the throat

ymin < yrk+i
< ymax; i ≥ 0. (22)

Since our objective is to prevent the shock from moving upstream causing engine unstart,

we will set ymin > 1, e.g. ymin = 1.1. The controller tuning parameters are the weighting

matrices, the prediction horizon, and the control horizon in the MPC formulation. Good

performance is obtained by settingM = N = 10, Q = CT
r Cr, R = 0.05 and P to the solution

to the algebraic Riccati equation. The resulting closed-loop performance is shown for the

different disturbance cases in Figure 7. It is seen that the controller gives good performance
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Figure 7. Uncontrolled (dashed) and controlled (solid) Mach number for Case 1 (top), Case
2 (middle) and Case 3 (bottom).

in all three cases. There are, however, some minor oscillations in the closed-loop response,

which are attributed to full model/reduced model mismatch and inexact modeling of the

disturbance in the prediction model. Recall that we assume that the disturbance is constant
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over the prediction horizon, while it in fact increases or decreases, corresponding to the shape

of the Gaussian distribution. Also, the horizon M = N = 10 is somewhat short, especially

since there is an inverse response from inputs to output.

Constraints on the states/outputs often represent operational desirables rather than fun-

damental operational constraints. In addition, from a practical point of view it does not

make sense to use tight state constraints because of the presence of noise, disturbances and

numerical errors. In order to guarantee feasibility of the MPC problem, we “soften” the con-

straints on the outputs. Soft constraints represent bounds that are allowed to be violated if

necessary, with the violation being penalized in the cost function. The soft constraints are

typically implemented by introducing so-called slack variables, s, in the constraint formula-

tion. For instance, if we want a soft lower bound on y, we require

ymin ≤ yrk+i
+ s; i ≥ 0 (23)

s ≥ 0, (24)

and add a penalty term f (s) to the cost function (2a). f (s) is typically chosen as

f (s) = w ‖s‖ , (25)

where w is a scalar weight and ‖s‖ is some norm of s. Penalty functions that lead to

constraint violation and use of slack only if the original problem is left infeasible are called

exact penalty functions. Consequently, the constraints will not be violated unnecessarily if

the penalty function is exact. In order to achieve an exact penalty function, the 1-norm or

the ∞-norm must be used in (25), and the weight w must be sufficiently large.41,42

If we again consider disturbance Case 3, we see from Figure 7 that the controlled Mach

number falls below 1.36. Now, we set ymin = 1.36 as a soft constraint, and penalize con-

straint violation with an exact penalty function. The resulting Mach number is compared

to the simulation from Figure 7 which has a hard constraint ymin = 1.1 in Figure 8. The

corresponding control inputs are shown in Figure 9.

To further address the question of robustness, we add noise to the measured Mach number

y. For that purpose we add Gaussian white noise of different intensities to the output of the

CFD model during the simulation, and study the effect in closed loop. Figure 10 shows a

simulation run without noise, compared to three simulation runs with Gaussian white noise.

It can be seen that in the presence of noise, particularly at the two lower levels, the controller

performance remains good.
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Figure 8. Mach number at inlet throat for two simulations with disturbance Case 3, with a
soft constraint yk+i > 1.36 and a hard constraint yk+i > 1.1. The horizontal line indicates the
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10−6. Bottom right: Gaussian white noise of intensity 10−4, corresponding to Mach number
measurement accuracy within ±0.01M .

V. Conclusions

This paper presents a new framework for achieving real-time constrained optimal control

for large-scale systems, such as those arising in aerospace flow control applications. The

methodology, which combines eMPC with model reduction, is demonstrated for an example

that considers control of a supersonic inlet. This example presents a significant challenge

to model reduction methods. First, POD reduced models suffer from instability and thus

cannot be used in a control setting. Further, obtaining models of very low dimensional is

critical in order for the eMPC scheme to be viable for real-time control. Using a goal-oriented

reduction methodology, we were able to derive a reduced model with ten states that yields

acceptable approximation quality and is within the capacity of the eMPC scheme.

While we have not explicitly analyzed the robustness of the reduced model predictive

controller, good performance is achieved by tuning based on exhaustive simulations for ranges

of operating conditions. In many cases this approach leads to better performance than using

robust MPC techniques. Choosing the right robust MPC technique is an art, and much

experience is necessary to make it work.

The proposed methodology is also applicable for more complicated control tasks, such as

nonlinear MPC and reference tracking, for which the explicit solution of the MPC problem
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can still be found (although approximately, in some cases).
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