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SUMMARY

Reduced-order models that are able to approximate output quantities of interest of high-fidelity com-
putational models over a wide range of input parameters play an important role in making tractable
large-scale optimal design, optimal control, and inverse problem applications. We consider the problem
of determining a reduced model of an initial value problem that spans all important initial conditions,
and pose the task of determining appropriate training sets for reduced-basis construction as a sequence
of optimization problems. We show that, under certain assumptions, these optimization problems have an
explicit solution in the form of an eigenvalue problem, yielding an efficient model reduction algorithm that
scales well to systems with states of high dimension. Furthermore, tight upper bounds are given for the
error in the outputs of the reduced models. The reduction methodology is demonstrated for a large-scale
contaminant transport problem. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Reduced-order models that are able to approximate outputs of high-fidelity computational models
over a wide range of input parameters have an important role to play in making tractable large-
scale optimal design, optimal control, and inverse problem applications. In particular, the state
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estimation inverse problem setting requires a reduced model that spans the space of important
initial conditions, i.e. those that have the greatest influence on the output quantities of interest.
Creating such a model with existing model reduction techniques presents a significant challenge
due to the need to sample adequately the high-dimensional space of possible initial conditions.
In this paper, we present a new methodology that employs an efficient sampling strategy to make
tractable the task of determining a reduced model for large-scale linear initial value problems that
are accurate over all initial conditions.

For the most part, reduction techniques for large-scale systems have focused on a projection
framework that utilizes a reduced-space basis. Methods to compute the basis in the large-scale
setting include Krylov-subspace methods [1–3], approximate balanced truncation [4–7], and proper
orthogonal decomposition (POD) [8–10]. Progress has been made in development and application
of these methods to optimization applications with a small number of input parameters, for example,
optimal control [11–14] and parametrized design of interconnect circuits [15]. In the case of a
high-dimensional input parameter space, the computational cost of determining the reduced basis
by these techniques becomes prohibitive unless some sparse sampling strategy is employed.

For initial-condition problems of moderate dimension, a reduction method has been proposed
that truncates a balanced representation of the finite-dimensional Hankel operator [16]. In [17],
POD was used in a large-scale inverse problem setting to define a reduced space for the initial
condition in which to solve the data assimilation problem. In that work, only a single initial
condition was used to generate the state solutions necessary to form the reduced basis: either the
true initial condition which does contain the necessary information but would be unavailable in
practice, or the background estimate of the initial state which defines a forecast trajectory that may
not be sufficiently rich in terms of state information.

For model reduction of linear time-invariant systems using multipoint rational Krylov approxi-
mations, two methods have been recently proposed to choose sample locations: an iterative method
to choose an optimal set of interpolation points [18], and a heuristic statistically based resampling
scheme to select sample points [19]. To address the more general challenge of sampling a high-
dimensional parameter space to build a reduced basis, the greedy algorithm was introduced in [20].
The key premise of the greedy algorithm is to adaptively choose samples by finding the location
in parameter space where the error in the reduced model is maximal. In [21], the greedy algorithm
was applied to find reduced models for the parametrized steady incompressible Navier–Stokes
equations. In [22, 23], the greedy algorithm was combined with a postriori error estimators for
parametrized parabolic partial differential equations (PDEs), and applied to several optimal control
and inverse problems.

Here, we address the problem of determining a reduced basis, and hence a reduced model, for
large-scale linear initial value problems that is accurate over all possible initial-conditions. The
reduced basis is associated with a judicious sampling of the initial-condition space. The basis spans
these initial-condition samples, as well as the state trajectories determined by them. The span can
be computed by the POD, or else by solution of an optimization problem to find the basis that
minimizes the output error at the sample points [24]. The sampling problem itself is formulated
as a greedy optimization problem. Rather than invoke error estimators to approximate the errors
in the outputs as in [20–23], the objective function of the greedy optimization problem targets the
actual errors. To define the errors, the optimization problem must then be constrained by the initial
value systems representing the full and reduced models. Under certain reasonable assumptions,
this optimization problem admits an explicit solution in the form of an eigenvalue problem for the
dominant eigenvectors, which define the samples in initial-condition space and hence the reduced
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basis. Furthermore, the eigenvalue form leads to tight, computable upper bounds for the error in
the outputs of the reduced model.

This article is organized as follows. Section 2 describes the projection framework used to derive
the reduced-order dynamical system. We then present in Section 3 the theoretical approach leading
to a basis-construction algorithm. In Section 4, we demonstrate the efficacy of the algorithm
via numerical experiments on a problem of 2-D convective–diffusive transport. We present an
application to model reduction for 3-D contaminant transport in an urban canyon in Section 5, and
offer conclusions in Section 6.

2. REDUCED-ORDER DYNAMICAL SYSTEMS

Consider the general linear discrete-time system

x(k + 1) = Ax(k) + Bu(k), k = 0, 1, . . . , T − 1 (1)

y(k) =Cx(k), k = 0, 1, . . . , T (2)

with initial condition

x(0)= x0 (3)

where x(k)∈ RN is the system state at time tk , the vector x0 contains the specified initial state,
and we consider a time horizon from t = 0 to t = tT . The vectors u(k) ∈ RP and y(k)∈ RQ contain,
respectively, the P system inputs and Q system outputs at time tk . In general, we are interested in
systems of the form (1)–(3) that result from spatial and temporal discretization of PDEs. In this
case, the dimension of the system, N , is very large and the matrices A∈ RN×N , B ∈ RN×P , and
C ∈ RQ×N result from the chosen spatial and temporal discretization methods.

A reduced-order model of (1)–(3) can be derived by assuming that the state x(k) is represented
as a linear combination of n basis vectors,

x̂(k) = V xr(k) (4)

where x̂(k) ∈ RN is the reduced-model approximation of the state x(k) and n�N . The projection
matrix V ∈ RN×n contains as columns the orthonormal basis vectors Vi , i.e. V =[V1 V2 . . . Vn],
and the reduced-order state xr(k) ∈ Rn contains the corresponding modal amplitudes for time tk .
Using representation (4) together with a Galerkin projection of the discrete-time system (1)–(3)
onto the space spanned by the basis V yields the reduced-order model with state xr and output yr,

xr(k + 1) = Arxr(k) + Bru(k), k = 0, 1, . . . , T − 1 (5)

yr(k) =Crxr(k), k = 0, 1, . . . , T (6)

xr(0) = V Tx0 (7)

where Ar = V TAV , Br = V TB, and Cr =CV .
Since system (1)–(3) is linear, the effects of inputs u and initial conditions x0 can be considered

separately. In this paper, we focus on the initial-condition problem and, without loss of generality,
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assume that u(k) = 0, k = 0, 1, . . . , T −1. For convenience of notation, we write the discrete-time
system (1)–(3) in matrix form as

Ax= Fx0 (8)

y=Cx (9)

where

x=

⎡
⎢⎢⎢⎢⎢⎣

x(0)

x(1)

...

x(T )

⎤
⎥⎥⎥⎥⎥⎦

, y=

⎡
⎢⎢⎢⎢⎢⎣

y(0)

y(1)

...

y(T )

⎤
⎥⎥⎥⎥⎥⎦

(10)

The matrices A, F, and C in (8) and (9) are given by

A=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I 0 0 · · · 0

−A I 0
. . .

...

0 −A I
. . .

. . .

. . .
. . .

. . .
. . . 0

...
. . .

. . .
. . . 0

0 0 −A I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, F=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I

0

0

...

...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, C=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C 0 · · · · · · · · · 0

0 C 0
...

... 0 C 0

. . .
. . .

. . .

...
. . .

. . .
. . . 0

0 0 0 C

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11)

Similarly, the reduced-order model (5)–(7) can be written in matrix form as

Arxr = Frx0 (12)

yr =Crxr (13)

where xr, yr, Ar, and Cr are defined analogously to x, y, A, and C but with the appropriate
reduced-order quantities. The matrix Fr is given by

Fr =

⎡
⎢⎢⎢⎢⎢⎢⎣

V T

0

...

0

⎤
⎥⎥⎥⎥⎥⎥⎦

(14)

In many cases, we are interested in rapid identification of initial conditions from sparse mea-
surements of the states over a time horizon; we thus require a reduced-order model that will
provide accurate outputs for any initial condition contained in some set X0. Using the projection
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framework described above, the task therefore becomes one of choosing an appropriate basis V
so that the error between full-order output y and the reduced-order output yr is small for all initial
conditions of interest.

3. HESSIAN-BASED MODEL REDUCTION

In this section, a methodology to determine a basis that spans the space of important initial
conditions is presented. To compute the basis via a method such as POD, a sample set of initial
conditions must be chosen. At each selected initial condition, a forward simulation is performed
to generate a set of states, commonly referred to as snapshots, from which the reduced basis is
formed. It has been shown that in the case of systems that are linear in the state, POD is equivalent
to balanced truncation if the snapshots are computed for all possible initial conditions [25]. Since
sampling all possible initial conditions is not feasible for large-scale problems, we propose an
adaptive approach to identify important initial conditions that should be sampled. The approach
is motivated by the greedy algorithm of [20], which proposed an adaptive approach to determine
the parameter locations at which samples are drawn to form a reduced basis. For the linear finite-
time-horizon problem considered here, we show that the greedy algorithm can be formulated as
an optimization problem that has an explicit solution in the form of an eigenvalue problem.

3.1. Theoretical approach

Our task is to find an appropriate reduced basis and associated reduced model: one that provides
accurate outputs for all initial conditions of interest. We define an optimal basis, V ∗, to be one
that minimizes the maximal L2 error between the full-order and reduced-order outputs of the fully
discrete system over all admissible initial conditions,

V ∗ = argmin
V

max
x0∈X0

(y − yr)T(y − yr) (15)

where

Ax= Fx0 (16)

y=Cx (17)

Arxr = Frx0 (18)

yr =Crxr (19)

For this formulation, the only restriction that we place on the set X0 is that it contain vectors of
unit length. This prevents unboundedness in the optimization problem, since otherwise, the error
in the reduced system could be made arbitrarily large. Naturally, because the system is linear, the
basis V ∗ will still be valid for initial conditions of any finite norm.

A suboptimal but computationally efficient approach to solving the optimization problem (15)–
(19) is inspired by the greedy algorithm of [20]. Construction of a reduced basis for a steady
or unsteady problem with parameter dependence, as considered in [21, 22], requires a set of
snapshots, or state solutions, over the parameter–time space. The greedy algorithm adaptively
selects these snapshots by finding the location in parameter–time space where the error between
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the full-order and reduced-order models is maximal, updating the basis with information gathered
from this sample location, forming a new reduced model, and repeating the process. In the case
of the initial-condition problem (15)–(19), the greedy approach amounts to sampling at the initial
condition x∗

0 ∈X0 that maximizes the error in (15).
The key step in the greedy algorithm is finding the worst-case initial condition x∗

0 , which we
achieve by solving the modified optimization problem

x∗
0 = arg max

x0 ∈X0

(y − yr)T(y − yr) (20)

where

Ax= Fx0 (21)

y=Cx (22)

Arxr = Frx0 (23)

yr =Crxr (24)

Equations (20)–(24) define a large-scale optimization problem which includes the full-scale
dynamics (21), (22) as constraints. The approach taken in [21, 22] is to replace these constraints
with error estimators, so that the full-scale model does not need to be invoked during solution of
the optimization problem. Further, in [21, 22], the optimization problem (20)–(24) is solved by a
grid-search technique that addresses problems associated with non-convexity and non-availability
of derivatives.

In the present article, we exploit the linearity of the state equations to eliminate the full-order
and reduced-order states and yield an equivalent unconstrained optimization problem. Eliminating
constraints (21)–(24) by solving for the full and reduced states yields

x∗
0 = arg max

x0∈X0

xT0 H
ex0 (25)

where

H e = (CA−1F − CrA−1
r Fr)

T(CA−1F − CrA−1
r Fr) (26)

It can be seen that (25) is a quadratic unconstrained optimization problem with Hessian matrix
H e ∈ RN×N . From (26), it can be seen that H e is a symmetric positive semi-definite matrix that
does not depend on the state or initial condition. The eigenvalues of H e are therefore non-negative.
Since we are considering initial conditions of unit norm, the solution x∗

0 maximizes the Rayleigh
quotient; therefore, the solution of (25) is given by the eigenvector corresponding to the largest
eigenvalue of H e. This eigenvector is the initial condition for which the error in reduced-model
output prediction is largest.

These ideas motivate the following basis-construction algorithm for the initial condition problem.

Algorithm 1
Greedy Reduced-Basis Construction.
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Initialize with V = 0, so that the initial reduced-order model is zero.

1. For the error Hessian matrix, H e as defined in (26), find the eigenvector ze1 with largest
eigenvalue �e1.

2. Set x0 = ze1 and compute the corresponding solution x using (8).
3. Update the basis V by adding the new information from the snapshots x(k), k = 0, 1, . . . , T .
4. Update the reduced model using the new basis and return to Step 1.

In Step 3 of Algorithm 1, the basis could be computed from the snapshots, using, for example, the
POD. A rigorous termination criterion for the algorithm is available in the form of an error bound,
which will be discussed below. It should be noted that, while the specific form of Algorithm 1
applies only in the linear case, the greedy sampling concept is applicable to non-linear problems. In
the general non-linear case, one would solve an optimization problem similar in form to (20)–(24),
but with the appropriate non-linear governing equations appearing as constraints. In this case, the
explicit eigenvalue solution to the optimization problem would not hold; instead, one would use a
method that is appropriate for large-scale simulation-constrained optimization (see [26]) to solve
the resulting optimization problem.

Under certain assumptions, the form of H e in (25) can be simplified, leading to an algorithm that
avoids construction of the reduced model at every greedy iteration. We proceed by decomposing
a general initial condition vector as

x0 = xV0 + x⊥
0 (27)

where xV0 is the component of x0 in the subspace spanned by the current basis V , and x⊥
0 is

the component of x0 in the orthogonal complement of that subspace. Substituting (27) into the
objective function (25), we recognize that Frx⊥

0 = 0, using the form of Fr given by (14) and that,
by definition, V Tx⊥

0 = 0. The unconstrained optimization problem (25) can therefore be written as

x∗
0 = arg max

x0∈X0

(CA−1FxV0 + CA−1Fx⊥
0 − CrA−1

r Frx
V
0 )T

(CA−1FxV0 + CA−1Fx⊥
0 − CrA−1

r Frx
V
0 ) (28)

Expression (28) can be approximated by assuming that

CA−1FxV0 =CrA−1
r Frx

V
0 (29)

which means that for initial conditions xV0 in the space spanned by the basis, we assume that the
reduced output exactly matches the full output, i.e. y= yr. An approach to satisfying this condition
will be described shortly. Using approximation (29), we can rewrite (25) as

x∗
0 = arg max

x⊥
0 ∈X0

(x⊥
0 )THx⊥

0 (30)

where

H = (CA−1F)T(CA−1F) (31)

H ∈ RN×N is now the Hessian matrix of the full-scale system and does not depend on the reduced-
order model. As before, H is a symmetric, positive semi-definite matrix that does not depend on
the state or initial condition.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; 73:844–868
DOI: 10.1002/nme



HESSIAN-BASED MODEL REDUCTION FOR LARGE-SCALE SYSTEMS 851

If we choose to initialize the greedy algorithm with an empty basis, V = 0, then the maximizer
of (30) on the first greedy iteration is given by the eigenvector of H corresponding to the largest
eigenvalue. We denote this initial condition by z1 and note that z1 satisfies

Hz1 = �1z1 (32)

where �1 is the largest eigenvalue of H . We then set V = z1. Under the assumption that (29) holds,
on the second greedy iteration we would therefore seek the initial condition that maximizes (30).
Clearly, this initial condition, which should be orthogonal to z1, is given by z2, the eigenvector of
H corresponding to the second largest eigenvalue.
Returning to assumption (29), this condition can be satisfied if we include in the basis not just

the sequence of optimal initial conditions x∗
0 = {z1, z2, . . .}, but rather the span of all snapshots

(i.e. instantaneous state solutions contained in x) obtained by solving (8) for each of the seed
initial conditions z1, z2, . . . . Approximation (29) will then be accurate, provided the final time
tT is chosen so that the output y(k) is small for k>T . If the output is not small for k>T , then a
snapshot collected at some time tk̄ , where k̄<T but k̄ is large, will be added to the basis; however, if
that state were then used as an initial condition in the resulting reduced-order model, the resulting
solution yr would not necessarily be an accurate representation of y. This is because the basis
would not contain information about system state evolution after time tT−k̄ . In that case, (29) would
not hold. Further, by including both the initial conditions, zi , and the corresponding snapshots,
x, in the basis, the sequence of eigenvectors zi will no longer satisfy the necessary orthogonality
conditions; that is, the second eigenvector z2 may no longer be orthogonal to the space spanned
by the basis comprising z1 and its corresponding state solutions. This is because setting x0 = z1
and computing x will likely lead to some states that have components in the direction of z2. We
would therefore expect this simplification to be more accurate for the first few eigenvectors and
become less accurate as the number of seed initial conditions is increased.

These simplifications lead us to an alternate ‘one-shot’ basis-construction algorithm for the
initial-condition problem. This algorithm does not solve the optimization problems (15)–(19) or
(20)–(24) exactly, but provides a good approximate solution to the problem (20)–(24) under the
conditions discussed above. We use the dominant eigenvectors of the Hessian matrix H to identify
the initial-condition vectors that have the most significant contributions to the outputs of interest.
These vectors are in turn used to initialize the full-scale discrete-time system to generate a set of
state snapshots that are used to form the reduced basis.

Algorithm 2
One-Shot Hessian-Based Reduced-Basis Construction.

1. For the full-order Hessian matrix, H as defined in (31), find the p eigenvectors z1, z2, . . . , z p
with largest eigenvalues �1��2� · · · ��p��p+1� · · ·��N�0.

2. For i = 1, . . . , p, set x0 = zi and compute the corresponding solution xi using (8).
3. Form the reduced basis as the span of the snapshots xi (k), i = 1, 2, . . . , p, k = 0, 1, . . . , T .

Steps 2 and 3 in Algorithm 2 allow us to (approximately) satisfy assumption (29) by including not
just the initial conditions z1, z2, . . . , z p in the basis but also the span of all snapshots generated
from those initial conditions. The basis could be computed from the snapshots, using, for example,
the POD.
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3.2. Error analysis

A direct measure of the quality of the reduced-order model is available using the analysis framework
described above. We define the error, �, due to a particular initial condition x0 as

�=‖y − yr‖2 =‖(CA−1F − CrA−1
r Fr)x0‖2 (33)

For a given reduced model, the dominant eigenvector of H e provides the worst-case initial condition.
Therefore, the value of the maximal error �max (for an initial condition of unit norm) is given by

�max =
√

�e1 (34)

where �e1 is the largest eigenvalue of the error Hessian H e defined by (26). The value �max provides
both a measure on the quality of the reduced model and a quantitative termination criterion for
the basis-construction algorithm.

In Algorithm 1, �max is readily available and thus can be used to determine how many cycles
of the algorithm to perform, i.e. the algorithm would be terminated when the worst-case error is
sufficiently small. In Algorithm 2, it is computationally more efficient to select p, the number
of seed initial-conditions, based on the decay rate of the full Hessian eigenvalues �1, �2, . . . and
to compute all the necessary eigenvectors z1, z2, . . . , z p at once. Once the reduced model has
been created using Algorithm 2, the error Hessian H e can be formed and the error criterion (34)
checked to determine if further sampling is required. While Algorithm 1 is expected to reduce
the worst-case error more quickly, the one-shot Algorithm 2 is attractive since it depends only on
the large-scale system properties and thus does not require us to build the reduced model on each
cycle.

We also note that the eigenvectors of H = (CA−1F)T(CA−1F) are equivalent to the (right)
singular vectors of CA−1F. Since the latter quantity serves as an input–output mapping, use of its
singular vectors for basis formation is intuitively attractive.

It is also interesting to note that the Hessian H may be thought of as a finite-time observability
gramian [27].

3.3. Large-scale implementation

We first discuss the implementation of Algorithm 2 in the large-scale setting, and then remark on
the differences for Algorithm 1.

Algorithm 2 is a one-shot approach in which all of the eigenpairs can be computed from the
single Hessian matrix H in (31). This matrix can be formed explicitly by first forming A−1F,
which requires N ‘forward solves’ (i.e. solutions of forward-in-time dynamical systems with A
as coefficient matrix), where N is the number of initial-condition parameters; or else by first
forming A−TCT, which requires Q ‘adjoint’ solves (i.e. solutions of backward-in-time dynamical
systems with AT as coefficient matrix), where Q is the number of outputs. For large-scale problems
with high-dimensional initial condition and output vectors, explicit formation and storage of H is
thus intractable. (A similar argument can be made for the intractability of computing the singular
value decomposition of CA−1F.) Even if H could be formed and stored, computing its dominant
spectrum would be prohibitive since it is a dense matrix of order N × N .

Instead, we use a matrix-free iterative method such as Lanczos to solve for the dominant
eigenpairs of H . Such methods require at each iteration a matrix–vector product of the form
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Hwk for some wk , which is formed by successive multiplication of vectors with the component
matrices that make up the Hessian in (31). At each iteration, this amounts to one forward and one
adjoint solve involving the system A. When the eigenvalues are well separated, convergence to
the largest eigenvalues of H is rapid. Moreover, when the spectrum decays rapidly, only a handful
of eigenvectors are required by Algorithm 2. Many problems have Hessian matrices that are of
low rank and spectra that decay rapidly, stemming from the limited number of initial conditions
that have a significant effect on outputs of interest. For such problems the number of Lanczos
iterations required to extract the dominant part of the spectrum is often independent of the problem
size N .

Under this assumption, we can estimate the cost of Step 1 of Algorithm 2 (which dominates
the cost) in the case when the dynamical system (8)–(9) stems from a discretized parabolic partial
differential equation (PDE). The cost of each implicit time step of a forward or adjoint solve
is usually linear or weakly superlinear in problem size, using modern multilevel preconditioned
linear solvers. Therefore for T time steps, overall work for a forward or adjoint solve scales as
T N 1+�, with � usually very small. For a 3-D spatial problem, a number of time steps on the order
of the diameter of the grid, and an optimal preconditioner, gives O(N 4/3) complexity per forward
solve, and hence per Lanczos iteration. Assuming that the number of Lanczos iterations necessary
to extract the dominant part of the spectrum is independent of the grid size, the overall complexity
remains O(N 4/3). (Compare this with straightforward formation of the Hessian and computation
of the eigenvalues with the QR algorithm which requires O(N 3) work.)

Algorithm 1 is implemented in much the same way. The main difference is that the error Hessian
H e replaces the Hessian H , and we find the dominant eigenpair of each of a sequence of eigenvalue
problems, rather than finding p eigenpairs of the single Hessian H . Each iteration of a Lanczos-
type solver for the eigenvalue problem in Algorithm 1 resembles that of Algorithm 2, and therefore
the costs per iteration are asymptotically the same. It is more difficult to characterize the number
of greedy iterations, and hence the number of eigenvector problems, that will be required using
Algorithm 1. However, to the extent that the assumptions outlined in Section 3.1 hold, the number
of greedy iterations will correspond roughly to the number of dominant eigenvalues of the full
Hessian matrix H . As reasoned above, the spectrum of H is expected to decay rapidly for the
problems of interest here; thus, convergence of the greedy reduced-basis construction algorithm is
expected to be rapid.

4. APPLICATION TO A 2D CONVECTION–DIFFUSION TRANSPORT PROBLEM

In this section, the model reduction methodology described above is assessed for a contaminant
transport problem. The physical process is modeled by the convection–diffusion equation

�w

�t
+ v · ∇w − �∇2w = 0 in � × (0, tf) (35)

w = 0 on �D × (0, tf) (36)

�w

�n
= 0 on �N × (0, tf) (37)

w = w0 in � for t = 0 (38)
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where w is the contaminant concentration (which varies in time and over the domain �), v is the
velocity vector field, � is the diffusivity, tf is the time horizon of interest, and w0 is the given
initial condition. Homogeneous Dirichlet boundary conditions are applied on the inflow boundary
�D, while homogeneous Neumann conditions are applied on the other boundaries �N. We first
consider the case of a simple 2-D domain, which leads to a system of the form (8) of moderate
dimension; in the next section a large-scale 3-D example will be presented.

4.1. Two-dimensional model problem

Figure 1 shows the computational domain for the 2-D contaminant transport example. The velocity
field is taken to be uniform, constant in time, and directed in the positive x̄-direction as defined
by Figure 1. The inflow boundary, �D, is defined by x̄ = 0, 0�ȳ�0.4; the remaining boundaries
comprise �N.

A streamline upwind Petrov–Galerkin (SUPG) [28] finite element method is employed to
discretize (35) in space using triangular elements. For the cases considered here, the spatial mesh
has N = 1860 nodes. The Crank–Nicolson method is used to discretize the equations in time. This
leads to a linear discrete-time system of the form (8), where the state vector x(k)∈ R1860 contains
the values of contaminant concentration at spatial grid points at time tk . For all experiments,
the timestep used was �t = 0.02 and the time limit, set approximately by the maximum time of
convection across the length of the domain, was tT = 1.4.

Figure 1. The computational domain and locations of sensor output nodes.
Top: two-sensor case, bottom: 10-sensor case.
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Figure 2. A comparison of the Hessian eigenvalue spectra of H for the
two- and 10-output cases. Pe= 100.

The matrix A in (8) depends on the velocity field and the Peclet number, Pe, which is defined as

Pe= vc�c

�
(39)

where the characteristic velocity vc is taken to be the maximum velocity magnitude in the domain,
while the domain length is used as the characteristic length �c. The uniform velocity field described
above was used in all experiments, but Pe was varied. Increasingly convective transport scenarios
corresponding to Peclet numbers of 10, 100, and 1000 were used to generate different full-scale
systems.

The outputs of interest are defined to be the values of concentration at selected sensor locations in
the computational domain. Figure 1 shows two different sensor configurations that were employed
in the results presented here.

The first step in creating a reduced model with Algorithm 2 is to compute p dominant eigen-
vectors of the full-scale Hessian matrix H . Figure 2 shows the eigenvalue spectra of H for the
two-sensor case and the 10-sensor case. The relative decay rates of these eigenvalues are used to
determine p, the number of eigenvectors used as seed initial conditions. We specify the parameter
�̄, and apply the criterion that the j th eigenvector of H is included if � j/�1>�̄.

Figure 2 demonstrates that the decay rate of the dominant eigenvalues is related to the number
and positioning of output sensors. For the two-output case, the two dominant eigenvalues �1 and �2
are of almost equal magnitude; analogous behaviour can be seen for the first 10 eigenvalues in the
10-output case. This is consistent with the physical intuition that similarly important modes exist
for each of the output sensors. For instance, a mode with initial concentration localized around one
particular sensor is of similar importance as another mode with high concentration near a different
sensor.
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4.2. Reduced-model performance

Once the p seed eigenvectors have been computed, the corresponding state solutions, x1, x2, . . . , xp,
are computed from (8) using each eigenvector in turn as the initial condition x0. The final step
in Algorithm 2 requires the formation of the reduced basis from the span of x1, x2, . . . , xp.
We achieve this by aggregating all state solutions xi (k), i = 1, 2, . . . , p, k = 0, 1, . . . , T into
a snapshot matrix X ∈ RN×(T+1)p and using the POD to select the n basis vectors that most
efficiently span the column space of X . The number of POD basis vectors is chosen based on the
decay of the POD eigenvalues �1��2� · · · ��(T+1)p�0. As above, we define a parameter �̄, and
apply the criterion that the kth POD basis vector is retained if �k/�1>�̄.

The resulting reduced models given by (12), (13) can be used for any initial condition x0;
to demonstrate the methodology, we choose to show results for initial conditions comprising a
superposition of Gaussian functions. Each Gaussian is defined by

x0(x̄, ȳ) = 1

�
√
2�

e−[(x̄−x̄c)2+(ȳ−ȳc)2]/2�2 (40)

where (x̄c, ȳc) defines the center of the Gaussian and � is the standard deviation. All test initial-
conditions are normalized such that ‖x0‖2 = 1. Three sample initial-condition functions that are
used in the following analyses are shown in Figure 3 and are referred to by their provided labels
(a)–(c) throughout.

Tables I and II show sample reduced-model results for various cases using the two-sensor
configuration shown in Figure 1. The error � is defined in (33) and computed for one of the sample
initial conditions shown in Figure 3. It can be seen from the tables that a substantial reduction in
the number of states from N = 1860 can be achieved with low levels of error in the concentration
prediction at the sensor locations. The tables also show that including more modes in the reduced
model, either by decreasing the Hessian eigenvalue decay tolerance �̄ or by decreasing the POD
eigenvalue decay tolerance �̄, leads to a reduction in the output error. Furthermore, the worst-case
error in each case, �max, is computed from (34) using the maximal eigenvalue of the error Hessian,
H e. It can also be seen that inclusion of more modes in the reduced model leads to a reduction in
the worst-case error, although the reduction in �max occurs more slowly than the reduction in �.

Figure 4 shows a comparison between reduced models computed using Algorithms 1 and 2. The
figure highlights the result shown in Table I; that is, using the one-shot approach, the maximum
error decreases rather slowly as the size of the model increases. However, the figure also shows that
the actual error for the same model (shown in this case for test initial condition (a)) is significantly
reduced as n increases. This suggests that while subsequent eigenvectors of the full-scale Hessian
may not directly target the worst-case initial condition, they do add useful information to the basis.
Conversely, Figure 4 shows that Algorithm 1, which uses the successive dominant eigenvector
of the error Hessian, does directly target the worst-case error. However, it can also be seen that
reductions in the worst-case error for a reduced model do not necessarily translate into reductions
in the error observed for a particular initial condition. For this problem, the cost of computing the
first eigenvector is substantially higher than the cost of computing subsequent eigenvectors, making
Algorithm 2 more efficient than Algorithm 1. For example, the results in Table II correspond to
p= 5 (�̄ = 0.1), p= 14 (�̄ = 0.01), and p= 22 (�̄ = 0.001) seed eigenvectors, with relative costs of
1, 1.12, and 1.42, respectively. Thus, the improvements in reduced-model accuracy seen in Table II
are obtained with relatively small increases in offline cost; however, this result is not expected to
hold for larger-scale problems where the overhead is much smaller than the cost of computing
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(c)

(a) (b)

Figure 3. Sample test initial conditions used to compare reduced-model outputs to full-scale outputs:
(a) single Gaussian; (b) superposition of three Gaussians; and (c) superposition of seven Gaussians.

Table I. Properties of various reduced-order models of a full-scale
system with Pe= 10 and two output sensors.

Case �̄ �̄ n � �max

1 0.1 10−4 28 0.0573 0.4845
2 0.1 10−6 45 0.0103 0.4838
3 0.01 10−4 43 0.0237 0.4758
4 0.01 10−6 69 0.0021 0.4752
5 0.001 10−4 79 0.0017 0.4735
6 0.001 10−6 122 0.0007 0.4418

Note: The errors � and �max are defined in (33) and (34), respectively;
� is evaluated when each reduced system (of dimension n) is subjected
to test initial condition (a).
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Table II. Properties of various reduced-order models of a full-scale
system with Pe= 100 and two output sensors.

Case �̄ �̄ n � �max

1 0.1 10−4 62 0.0738 0.1920
2 0.1 10−6 90 0.0722 0.1892
3 0.01 10−4 128 0.0032 0.1638
4 0.01 10−6 200 0.0017 0.1604
5 0.001 10−4 180 0.0004 0.1623
6 0.001 10−6 282 0.0002 0.1564

Note: The errors � and �max are defined in (33) and (34), respectively;
� is evaluated when each reduced system (of dimension n) is subjected
to test initial condition (c).

Figure 4. Top: maximum error, �max, for reduced models computed using Algorithms 1 and 2. Bottom:
error for test initial condition (a), �, using the same reduced models.

each additional eigenvector. For the results that follow, all reduced models were created using
Algorithm 2.

A representative comparison of full and reduced outputs, created by driving both the full and
reduced systems with test initial condition (b), is shown in Figure 5 for the case of Pe= 1000.
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Figure 5. A comparison of full (N = 1860) and reduced (n = 196) outputs for two-sensor case using test
initial condition (b). Pe= 1000, �̄ = 0.01, �̄= 10−4, �= 0.0036.

The values �̄ = 0.01 and �̄= 10−4 are used, leading to a reduced model of size n = 196. The figure
demonstrates that a reduced model of size n = 196 formed using Algorithm 2 can effectively
replicate the outputs of the full-scale system for this initial condition. The error for this case as
defined in (33) is �= 0.0036.

In order to ensure that the results shown in Figure 5 are representative, 1000 initial conditions
are constructed randomly and tested using this reduced model. Each initial condition consists of
10 superposed Gaussian functions with random centers (x̄c, ȳc) and random standard deviations �.
This library of test initial conditions was used to generate output comparisons between the full-
scale model and the reduced-order model. The averaged error across all 1000 trials, �̄= 0.0023, is
close to the error associated with the comparison shown in Figure 5. Furthermore, the maximum
error over all 1000 trials is found to be 0.0056, which is well below the upper bound �max = 0.0829
established by (34).

Effect of variations in �̄: As discussed above, �̄ is the parameter that controls the number of
POD vectors n chosen for inclusion in the reduced basis. If �̄ is too large, the reduced basis will
not span the space of all initial conditions for which it is desired that the reduced-model be valid.
Figure 6 illustrates the effect of changing �̄. The curve corresponding to a value of �̄ = 10−6 shows
a clear improvement over the �̄= 10−4 case. This can also be seen by comparing the errors listed
in the first two rows of Table I, which correspond to the two reduced models seen in Figure 6.
However, the improvement comes at a price, since the number of basis vectors, and therefore the
size of the reduced model n, increases from 43 to 69 when �̄ is decreased.
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Figure 6. A comparison between full and reduced solutions at sensor location 1 for two different values
of �̄. Test initial condition (a) was used to generate the data. Pe= 10, �̄ = 0.1, two-sensor case.

Effect of variations in �̄: Another way to alter the size and quality of the reduced model is
to indirectly change p, the number of eigenvectors of H that are used as seed initial conditions
for basis creation. We accomplish this by choosing different values of the eigenvalue decay ratio
�̄. The effect of doing so is illustrated in Figure 7. An increase in reduced-model quality clearly
accompanies a decrease in �̄. This can also be seen by comparing rows 1 and 3 of Table II, which
correspond to the two reduced models seen in Figure 7. The increase in n with lower values of
�̄ is expected, since greater p implies more snapshot data with which to build the reduced basis,
effectively uncovering more full system modes and decreasing the relative importance of the most
dominant POD vectors. In general, for the same value of �̄, more POD vectors are included in the
basis if �̄ is reduced.

4.3. Ten-sensor case

To understand how the proposed method scales with the number of outputs in the system, we
repeat the experiments for systems with Q = 10 outputs corresponding to sensors in the randomly
generated locations shown in Figure 1. A reduced model was created for the case of Pe= 100,
with �̄= 10−4 and �̄ = 0.1. The result was a reduced system of size n = 245, which was able to
effectively replicate all 10 outputs of the full system. Figure 8 shows a representative result of the
full and reduced-model predictions at all 10 sensor locations.

The size n = 245 of the reduced model in this case is considerably larger than that in the
corresponding two-output case (n = 62), which is shown in the first row of Table II, although
both models were constructed with identical values of �̄ and �̄. The difference between high- and
low-Q experiments is related to the Hessian eigenvalue spectrum. As demonstrated in Figure 2,
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Figure 7. Lowering �̄ to increase p, the number of Hessian eigenvector initial conditions used in basis
formation, leads to more accurate reduced-order output. Test initial condition (c) was used with two output

sensors, Pe= 100 and �̄ = 10−4. The output at the second sensor location is plotted here.

the eigenvalue decay rate of the Q = 10 case is less rapid than that of the Q = 2 case. This means
that, for the same value of �̄, more seed initial conditions are generally required for systems with
more outputs. Since additional modes of the full system must be captured by the reduced model if
the number of sensors is increased, it is not surprising that the size of the reduced basis increases.

4.4. Observations and recommendations

The above results demonstrate that reduced models formed by the proposed method can be effective
in replicating full-scale output quantities of interest. At this point, we can use the results to
make recommendations about choosing �̄ and �̄, the two parameters that control reduced-model
construction.

In practice, one would like to choose these parameters such that both the reduced-model size
n and the modeling error for a variety of test initial conditions are minimal. The size of the
reduced model is important because n is directly related to the online computational cost, that is,
n determines the time needed to compute reduced output approximations, which is required to be
minimal for real-time applications. The offline cost of forming the reduced model is also a function
of �̄ and �̄. When �̄ is decreased, the basis formation algorithm requires more POD basis vectors
to be computed; thus, decreasing � increases the offline cost of model construction. In addition,
the online cost of solving reduced system in (12) and (13), which is not sparse, scales as n2T .
While decreasing �̄ might appreciably improve modeling accuracy, doing so can only increase the
time needed to compute reduced output approximations. Changes in �̄ affect the offline cost more
strongly. Every additional eigenvector of H to be calculated adds the cost of several additional

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; 73:844–868
DOI: 10.1002/nme



862 O. BASHIR ET AL.

Figure 8. A comparison of the full (N = 1860) and reduced (n = 245) outputs for all Q = 10 locations of
interest. Test initial condition (c) was used to generate these data with Pe= 100, �̄ = 10−4, �̄= 0.1.

large-scale system solves: several forward and adjoint solves are needed to find an eigenvector
using the matrix-free Lanczos solver described earlier. In addition, the number of columns of the
POD snapshot matrix X grows by (T + 1) if p is incremented by one; computing the POD basis
thus becomes more expensive. If these increases in offline cost can be tolerated, though, the results
suggest a clear improvement in reduced-model accuracy for a relatively small increase in online
cost.

Figure 9 illustrates the dependence of reduced model size and quality on the parameters �̄ and
�̄. For the case of 10 output sensors with Pe= 100, six different reduced models were constructed
with different combinations of �̄ and �̄. The three plots in Figure 9 show the error � versus the
reduced-model size n for each of the test initial conditions in Figure 3. Ideally, a reduced model
should have both small error and small n, so we prefer those models whose points reside closest to
the origin. Ignoring differences in offline model construction cost, decreasing �̄ should be favoured
over decreasing �̄ if more accuracy is desired. This conclusion is reached by realizing that for a
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Figure 9. A measure of the error in six different reduced models of the same system plotted versus their
sizes n for the 10-sensor case. The three plots were generated with test initial conditions (a), (b), and

(c), respectively. Pe= 100, Q = 10 outputs.

comparable level of error, reduced models constructed with lower values of �̄ are much smaller.
Maintaining a small size of the reduced model is important for achieving real-time computations
for large-scale problems of practical interest, as discussed in the next section.

5. APPLICATION: MODEL REDUCTION FOR A 3-D CONTAMINANT TRANSPORT
IN AN URBAN CANYON

We demonstrate our model reduction method by applying it to a 3-D airborne contaminant trans-
port problem for which a solution is needed in real time. Intentional or unintentional chemical,
biological, and radiological (CBR) contamination events are important national security concerns.
In particular, if contamination occurs in or near a populated area, predictive tools are needed to
rapidly and accurately forecast the contaminant spread to provide decision support for emergency
response efforts. Urban areas are geometrically complex and require detailed spatial discretization
to resolve the relevant flow and transport, making prediction in real-time difficult. Reduced-order
models can play an important role in facilitating real-time turn-around, in particular, on laptops
in the field. However, it is essential that these reduced models be faithful over a wide range of
initial conditions, since in principle any of these initial conditions can be realized. Once a suitable
reduced-order model has been generated, it can serve as a surrogate for the full model within an
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Figure 10. Building geometry and locations of outputs for the 3-D urban canyon problem.

inversion/data assimilation framework to identify the initial conditions given sensor data (see the
discussion of the inverse problem in the full-scale case in [29]).

To illustrate the generation of a reduced-order model that is accurate for high-dimensional initial
conditions, we consider a 3-D urban canyon geometry occupying a (dimensionless) 15× 15× 15
domain. Figure 10 shows the domain and buildings, along with the locations of six output nodes
that represent sensor locations of interest, all placed at a height of 1.5. The model used is again
the convection–diffusion equation, given by (35). The PDE is discretized in space using an SUPG
finite element method with linear tetrahedra, while the Crank–Nicolson method is used to dis-
cretize in time. Homogeneous Dirichlet boundary conditions of the form (36) are specified for
the concentration on the inflow boundary, x̄ = 0, and the ground, z̄ = 0. Homogeneous Neumann
boundary conditions of the form (37) are specified for the concentration on all other boundaries.

The velocity field, v, required in (35) is computed by solving the steady laminar incompressible
Navier–Stokes equations, also discretized with SUPG-stabilized linear tetrahedra. No-slip condi-
tions, i.e. v= 0, are imposed on the building faces and the ground z̄ = 0 (thus there is no flow
inside the buildings). The velocity at the inflow boundary x̄ = 0 is taken as known and specified
in the normal direction as

vx (z) = vmax

(
z

zmax

)0.5

with vmax = 3.0 and zmax = 15, and zero tangentially. On the outflow boundary x̄ = 15, a traction-
free (Neumann) condition is applied. On all other boundaries (ȳ = 0, ȳ = 15, z̄ = 15), we impose
a combination of no flow normal to the boundary and traction-free tangent to the boundary. The
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Figure 11. Transport of contaminant concentration through urban canyon at six different instants in time,
beginning with the initial condition shown in upper left.
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Figure 12. Full (65 600 states) and reduced (137 states) model contaminant concentration predictions at
each of the six output nodes for the three-dimensional urban canyon example.

spatial mesh for the full-scale system contains 68 921 nodes and 64 000 tetrahedral elements. For
both basis creation and testing, a final non-dimensional time tf = 20.0 is used, and discretized over
200 timesteps. The Peclet number based on the maximum inflow velocity and domain dimension
is Pe= 900. The PETSc library [30–32] is used for all implementation.

Figure 11 illustrates a sample forward solution. The test initial condition used in this simulation,
meant to represent the system state just after a contaminant release event, was constructed using
a Gaussian function with a peak magnitude of 100 centered at a height of 1.5.

For comparison with the full system, a reduced model was constructed using Algorithm 2 with the
eigenvalue decay ratios �̄ = 0.005 and �̄= 10−5, which led to p= 31 eigenvector initial conditions
and n = 137 reduced-basis vectors. Eigenvectors were computed using the Arnoldi eigensolver
within the SLEPc package [33], which is built on PETSc. Figure 12 shows a comparison of the
full and reduced time history of concentration at each output location. The figure demonstrates
that a reduced system of size n = 137, which is solved in a matter of seconds on a desktop,
can accurately replicate the outputs of the full-scale system of size N = 65 600. We emphasize
that the (offline) construction of the reduced-order model targets only the specified outputs, and
otherwise has no knowledge of the initial conditions used in the test of Figure 12 (or any other
initial conditions).
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6. CONCLUSIONS

A new method has been proposed for constructing reduced-order models of linear systems that
are parametrized by initial conditions of high dimension. Formulating the greedy approach to
sampling as a model-constrained optimization problem, we show that the dominant eigenvectors
of the resulting Hessian matrix provide an explicit solution to the greedy optimization problem. This
result leads to an algorithm to construct the reduced basis in an efficient and systematic way, and
further, provides quantification of the worst-case error in reduced-model output prediction. Thus,
the resulting reduced models are guaranteed to provide accurate replication of full-scale output
quantities of interest for any possible initial condition, making them appropriate for use in an
inverse problem/data assimilation setting. The adaptive greedy sampling approach combined with
the model-constrained optimization formulation provides a general framework that is applicable
to non-linear problems, although the explicit solution and maximal error guarantees apply only in
the linear case. Further, we note that the task of sampling system inputs (which here were taken
to be zero) to build a basis over the input space could also be formulated as a greedy optimization
problem.
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